Advertisement

Classification Scheme of the Metal-Insulator Transition and Anomalous Metals

  • M. Imada
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 119)

Abstract

Phase transitions between metals and the Mott insulator are categorized from classifications of these two adjacent phases. Two types of metal-insulator transitions are identified either by the vanishing carrier number or by the carrier mass divergence. To classify these different types of metal-insulator transitions in multi-component systems, the lower critical dimensions of the component order in the metal as well as in the insulator play the crucial role. Critical exponents such as the Drude weight, the correlation length and the dynamical exponent are investigated for both types of the transitions using the scaling theory. Anomalous properties of the metallic state near the Mott insulator are analyzed in light of this classification for the criticality and crossovers.

Keywords

Critical Exponent Free Energy Density Mott Insulator Tricritical Point Component Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Imada, J. Phys. Soc. Jpn. 62, 1105 (1993).CrossRefGoogle Scholar
  2. [2]
    M. Imada, J. Phys. Soc. Jpn. 63, 3059 (1994).CrossRefGoogle Scholar
  3. [3]
    M. Imada, J. Phys. Soc. Jpn. 63, No.12 (1994).Google Scholar
  4. [4]
    M. Imada, to appear in J. Low Temp. Phys.Google Scholar
  5. [5]
    M. Imada. Phys. Rev. B 48, 550 (1993); J. Phys. Soc. Jpn. 60, 1877 (1991).CrossRefGoogle Scholar
  6. [6]
    K. Hida, J. Phys. Soc. Jpn. 61, 1013 (1992); A.W. Sandvik and D.J. Scalapino, Phys. Rev. Lett. 72, 2777 (1994).CrossRefGoogle Scholar
  7. [7]
    E. Dagotto, J. Riera and D.J. Scalapino, Phys. Rev. B 45, 5744 (1992).CrossRefGoogle Scholar
  8. [8]
    N. Furukawa and M. Imada, J. Phys. Soc. Jpn. 61, 3331 (1992).CrossRefGoogle Scholar
  9. [9]
    N. Furukawa and M. Imada, J. Phys. Soc. Jpn. 62, 2357 (1993).Google Scholar
  10. [10]
    W. Kohn, Phys. Rev. 133A, 171 (1964).CrossRefGoogle Scholar
  11. [11]
    D.J. Thouless, Phys. Rep. 13C, 94 (1974).Google Scholar
  12. [12]
    B.S. Shastry and B. Sutherland, Phys. Rev. Lett. 65, 243 (1990).CrossRefGoogle Scholar
  13. [13]
    M.P.A. Fisher, P.B. Weichman, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989).CrossRefGoogle Scholar
  14. [14]
    Y. Tokura, Y. Takagi, Y. Okada, Y. Fujishima, T. Arima, K. Kumagai, and Y. Iye, Phys. Rev. Lett. 70, 2126 (1993).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • M. Imada
    • 1
  1. 1.Institute for Solid State PhysicsUniversity of TokyoTokyo 106Japan

Personalised recommendations