Advertisement

Fuzzy Logic Instructional Models: The Dynamic Construction of Programming Assignments in CASCO

  • Jeroen J. G. van Merriënboer
  • Jaap Jan Luursema
  • Hans Kingma
  • Frans Houweling
  • Arjen P. de Vries
Conference paper
Part of the NATO ASI Series book series (volume 140)

Abstract

This chapter introduces Fuzzy Logic Instructional Models (FLIM’s) as a promising approach to model knowledge of instruction. FLIM’s are applied in CASCO, an ITS for the dynamic construction of assignments to practice introductory programming. CASCO uses the Completion Strategy as a training strategy and generates so-called completion assignments, which consist of a problem description together with a solution (i.e., a program) that may be either complete, incomplete, or absent, explanations, questions, and instructional tasks. The learner has to complete increasingly larger parts of the given program as programming experience develops. This chapter offers a description of the Completion Strategy, an overview of CASCO’s architecture, and an in-depth description of the FLIM’s that govern the dynamic construction of assignments.

Keywords

Intelligent task generation instructional models fuzzy set theory fuzzy logic training strategies intelligent tutoring systems computer programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barr, A., Beard, M, & Atkinson, R. C. (1976). The computer as a tutorial laboratory: The Stanford BIP project. International Journal of Man-Machine Studies, 8, 567–596.MATHCrossRefGoogle Scholar
  2. Brecht(Wasson), B. J., MacCalla, G. I., Greer, J. E., & Jones, M. (1989). Planning the content of instruction. In D. Bierman, J. Breuker, & J. Sandberg (Eds.), Artificial intelligence and education: Proceedings of the 4th international conference on AI and education (pp. 32–41). Amsterdam: IOS.Google Scholar
  3. Brubaker, D.I. (1991). Introduction to fuzzy logic systems. Menlo Park, CA: The Huntington Group.Google Scholar
  4. Dijkstra, S., Krammer, H. P. M., & vanMerriënboer, J. J. G. (Eds.). (1992). Instructional models in computer-based learning environments. NATO ASI Series F, Vol. 104. Berlin: Springer.Google Scholar
  5. Gisolfi, A., Dattolo, A., & Balzano, W. (1992). A fuzzy approach to student modelling. Computers in Education, 19, 329–334.CrossRefGoogle Scholar
  6. Krammer, H. P. M., vanMerriënboer, J. J. G., & Maaswinkel, R. M. (1994). Plan-based delivery composition in intelligent tutoring systems for introductory computer programming. In J. J. G. vanMerriënboer (Ed.), Dutch research on knowledge-based instructional systems [special issue]. Computers in Human Behavior, 10, 139–154.Google Scholar
  7. Merrill, M. D. (1983). Component display theory. In C. M. Reigeluth (Ed.), Instructional design theories and models (pp. 279–333). Hillsdale, NJ: Erlbaum.Google Scholar
  8. Merrill, M. D., Li, Z., & Jones, M. K. (1990). Second generation instructional design (ID2). Educational Technology, 30(2), 26–31.Google Scholar
  9. Merrill, M. D., Li, Z., & Jones, M. K. (1992). An introduction to instructional transaction theory. In S. Dijkstra, H. P. M. Krammer, & J. J. G. vanMerrienboer (Eds.), Instructional models in computer-based learning environments (pp. 15–41). NATO ASI Series F, Vol. 104. Berlin: Springer.Google Scholar
  10. Seel, N. M. (1992). The significance of prescriptive decision theory for instructional design expert systems. In S. Dijkstra, H. P. M. Krammer, & J. J. G. vanMerriënboer (Eds.), Instructional models in computer-based learning environments (pp. 61–81). NATO ASI Series F, Vol. 104. Berlin: Springer.Google Scholar
  11. UniComal A/S (1992). UniComal version 3.11 Developers [computer program]. Broendby, Denmark: UniComal A/S.Google Scholar
  12. VanMerriënboer, J. J. G. (1990). Strategies for programming instruction in high school: Program completion vs. program generation. Journal of Educational Computing Research, 6, 265–285.CrossRefGoogle Scholar
  13. VanMerriënboer, J. J. G. (1992). Training strategies for teaching introductory computer programming. In F. L. Engel, D. G. Bouwhuis, T. Bosser, & G. d’Ydewalle (Eds.), Cognitive modelling and interactive environments in language learning (pp. 81–88). NATO ASI Series F, Vol. 87. Berlin: Springer.CrossRefGoogle Scholar
  14. VanMerriënboer, J. J. G. (1994). (Ed.). Dutch research on knowledge-based instructional systems [special issue]. Computers in Human Behavior, 10.Google Scholar
  15. VanMerriënboer, J. J. G., & DeCroock, M. B. M. (1992). Strategies for computer-based programming instruction: Program completion vs. program generation. Journal of Educational Computing Research, 8, 365–394.CrossRefGoogle Scholar
  16. VanMerriënboer, J. J. G., Jelsma, O., & Paas, F. G. W. C. (1992). Training for reflective expertise: A four component instructional design model for complex cognitive skills. Educational Technology Research & Development, 40, 23–43.CrossRefGoogle Scholar
  17. VanMerriënboer, J. J. G., & Krammer, H. P. M. (1987). Instructional strategies and tactics for the design of introductory computer programming courses in high school. Instructional Science, 16, 251–285.CrossRefGoogle Scholar
  18. VanMerriënboer, J. J. G., & Krammer, H. P. M. (1990). The “completion strategy” in programming instruction: Theoretical and empirical support. In S. Dijkstra, B. H. M. vanHout-Wolters, & P. C. van derSijde (Eds.), Research on instruction: Design and effects (pp. 45–61). Englewood Cliffs, NJ: Educational Technology.Google Scholar
  19. VanMerriënboer, J. J. G., Krammer, H. P. M., & Maaswinkel, R. M. (1994). Automating the planning and construction of programming assignments for teaching introductory computer programming. In R. D. Tennyson (Ed.), Automating instructional design, development, and delivery (pp. 617–7). NATO ASI Series F, Vol. 119. Berlin: Springer.Google Scholar
  20. VanMerriënboer, J. J. G., & Paas, F. G. W. C. (1990). Automation and schema acquisition in learning elementary computer programming: Implications for the design of practice. Computers in Human Behavior, 6, 273–289.CrossRefGoogle Scholar
  21. Wescourt, K., Beard, M., & Gould, L. (1977). Knowledge-based adaptive curriculum sequencing for CAI: Application of a network representation. In Proceedings of the 1977 Annual Conference, Association for Computing Machinery (pp. 234–240). New York: ACM.Google Scholar
  22. Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8, 338–353.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Jeroen J. G. van Merriënboer
    • 1
  • Jaap Jan Luursema
    • 1
  • Hans Kingma
    • 1
  • Frans Houweling
    • 1
  • Arjen P. de Vries
    • 1
  1. 1.Department of Instructional TechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations