Advertisement

Selected Applications of Bioremediation in Hazardous Waste Treatment

  • Katalin Perei
  • Béla Polyák
  • Csaba Bagyinka
  • Levente Bodrossy
  • Kornél L. Kovács
Conference paper
Part of the NATO ASI Series book series (volume 1)

Abstract

Environmental contamination usually consists of a mixture of dangerous chemicals which, to be degraded, will require a complex ecosystem of microbes. While none of the individual member species of this ecosystem are generally capable of decomposing all of the components of the mixed pollution, the concerted action of various species can potentially bring about the desired cleanup effect.

Keywords

Biogas Production Hydrogen Partial Pressure Sulfanilic Acid Nitrate Contamination Anaerobic Biodegradation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benstead J, Archer DB, Lloyd D (1990) Role of hydrogen in the growth of mutualistic methanogenic cultures. In: Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Transfer (Eds. Belaich JP, Bruschi M, Garcia JL) pg. 161.Google Scholar
  2. Blackburn JW, Hafker WR (1993) The impact of biochemistry, bioavailability and bioactivity on the selection of bioremediation techniques. ITBTECH 11: 328–333.CrossRefGoogle Scholar
  3. Bouwer EJ, Zehnder AJB (1993) Bioremediation of organic compounds — putting microbial metabolism to work. TIBTECH 11: 360–367.CrossRefGoogle Scholar
  4. Bowman JP, Jimenez L, Rosario I, Hazen TC, Sayler GS (1993) Characterization of the methanotrophic bacterial community in a trichloroethylene-contaminated subsurface groundwater site. Appl Env Microbiol 59: 2380–2387.Google Scholar
  5. Caplan JA (1993) The worldwide bioremediation industry: prospects for profit. TIBTECH 11: 320–323.CrossRefGoogle Scholar
  6. Ensley BD (1991) Biochemical diversity of trichloroethylene metabolism. Annu Rev Microbiol 45: 283–299.CrossRefGoogle Scholar
  7. Feigel BJ, Knackmuss HJ (1988) Bacterial catabolism of sulfanilic acid via catechol-4-sulfonic acid. FEMS Microbiol Lett 55: 113–118.CrossRefGoogle Scholar
  8. Feigel BJ, Knackmuss HJ (1991) Degradation of sulfanilic acid by a Syntropic culture. Sulfanilic acid degradation to maleylacetic acid by Pseudomonas paileronii and Agrobacterium radiobacter mixed culture. Ind Waste Disposal M1: 125.Google Scholar
  9. Goszcynsky S, Paszcynski A, Pasti-Grigsby MB, Crawford RL, Crawford DL (1994) New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaeta chrysosporium and Streptomyces chromofuscus. J Bacteriol 176: 1339–1347.Google Scholar
  10. Hall JE, L’Hermite P, Newman PJ (1992) Treatment and use of sewage sludge and liquid agricultural wastes. ECSC-EEC-EAEC Brussels, ISBN 92-826-4142-2.Google Scholar
  11. Hutchins SR, Biodegradation of monoaromatic hydrocarbons by aquifer microorganisms using oxygen, nitrate, or nitrous oxide as the terminal electron acceptor. Appl Env Microbiol 57: 2403-2407.Google Scholar
  12. Kovacs KL, Polyak B (1991) Hydrogenase reactions and utilization of hydrogen in biogas production and microbiological denitrification systems. Proc 4th IGT Symp, Colorado Springs, Chapter 5, pp 1-16.Google Scholar
  13. Liu S, Suflita JM (1993) Ecology and evolution of microbial populations for bioremediation. TIBTECH 11: 344–352.CrossRefGoogle Scholar
  14. Locher HH, Leirsinger T, Cook AM (1991) 4-toluene sulfonate methyl-monooxygenase from Comamonas testosteroni T-2: purification and some properties of the oxygenase component. J Bacteriol 173: 3741–3748.Google Scholar
  15. Lowe SE, Jain MK, Zeikus JG (1993) Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol Rev 57: 451–509.Google Scholar
  16. Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbial Rev 56: 482–507.Google Scholar
  17. Murrell JC, Dalton H (1992) Methane and methanol utilizers. Plenum Press, New York, ISBN 0-306-43878-X.Google Scholar
  18. Tsien HC, Brusseau GA, Brusseau RS, Hanson RS, Wackett L (1989) Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b. Appl Env Microbiol 55: 2960–2964.Google Scholar
  19. Van Loosdrecht MCM, Heijnen SJ (1993) Biofilm bioreactors for waste-water treatment. TIBTECH 11: 117–121.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Katalin Perei
    • 1
  • Béla Polyák
    • 1
  • Csaba Bagyinka
    • 2
  • Levente Bodrossy
    • 2
  • Kornél L. Kovács
    • 2
  1. 1.Institute for BiotechnologyZ. Bay FoundationSzegedHungary
  2. 2.Institute of Biophysics, Biological Research CentreHungarian Academy of SciencesSzegedHungary

Personalised recommendations