Optical Quality

  • Frank-Thomas Lentes
  • Norbert Neuroth
Part of the Schott Series on Glass and Glass Ceramics book series (SCHOTT)


An optical glass type is defined by its refractive index and the Abbe number given in the catalogue. The melting process has to be controlled in such a way that the refractive index differs by less than ±1 × 10-3 from the nominal catalogue value and the deviation of the Abbe number is less than ±0.8%. It is possible to obtain glass with even better specifications, e.g., the deviation of the refractive index from the catalogue value is within ±2 × 10-4 and the deviation of the Abbe number is within ±0.2%. During the production the conditions of the tank melting process can vary; for instance the mass flow may be changed because pieces of different sizes must be produced. Volatile components of the glass melt may vaporize or the glass melt itself attacks the tank wall; these are some reasons for variations of the chemical composition of the glass. Therefore, the refractive index and the Abbe number of the glass are continuously controlled so that both values are kept within the tolerances described above during the whole production process. Owing to the large volume of a tank and the constant melting conditions, the properties of the glass vary only slowly with time, e.g., during a period of hours the variation of the glass properties is much smaller than the tolerances mentioned. So one can select parts of the production (batches) in which the refractive index varies by 1 × 10-4 or less (see classes of homogeneity in Sect. 3.1.1).


Refractive Index Optical Quality Optical Glass Abbe Number Optical Path Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 3.1
    National standards: American Military Specification MIL-G-174B Optical Glass (1986); British Standards Institution BS 4301 (1982); French Standard NF S 10 — 001 to 004 (1978); DIN 3140, Maβ-und Toleranzangaben für Optikeinzelteile (1978); DIN 58927, (1970); Standard of the GDR, TGL 21790, Optisches Glas, Bestimmung der Schlierenhaltigkeit (1980); Japan Optical Glass Industry Association (JOGIS) 11–75 (1975)Google Scholar
  2. 3.2
    International Organisation for Standardization ISO 10110, Optics and Optical Instruments (1992), Part 2 “Material imperfections — stress birefringence”, Part 3 “Bubbles and inclusions”, Part 4 “Inhomogeneity and striae”Google Scholar
  3. 3.3
    F. Reitmayer, E. Schuster: “Homogeneity of optical glasses”, Appl. Opt. 11, 1107–1111 (1972)ADSCrossRefGoogle Scholar
  4. 3.4
    C. Hofmann: “On the influence of inhomogeneities of refractive index and decen-tering errors upon image forming”, Exp. Tech. Phys. 26, 381–389 (1978)ADSGoogle Scholar
  5. 3.5
    W.B. Wetherell: “The calculation of image quality”, in Applied Optics and Engineering, Vol. VIII (Academic Press, New York 1980) pp. 172–315Google Scholar
  6. 3.6
    K. Creath: “Phase-measurement interferometry techniques”, in Progress of Optics XXVI, ed. by E. Wolf (Elsevier, New York 1988) pp. 350–393Google Scholar
  7. 3.7
    D. Malacara (ed.): Optical Shop Testing, 2nd edn. (Wiley, New York 1992)Google Scholar
  8. 3.8
    J. Schwider: “Interferometrische Homogenitätsprüfung mit Kompensation”, Opt. Commun. 6, 106–110 (1972)ADSCrossRefGoogle Scholar
  9. 3.9
    J. Schwider, R. Burow, K.-E. Elssner, R. Spolaczyk, J. Grzanna: “Homogeneity testing by phase sampling interferometry”, Appl. Opt. 24, 3059–3061 (1985)ADSCrossRefGoogle Scholar
  10. 3.10
    D. Tentori: “Homogeneity testing of optical glass by holographic interferometry”, Appl. Opt. 30, 752–755 (1991)ADSCrossRefGoogle Scholar
  11. 3.11
    F. Twyman, J.W. Perry: “Measuring small differences of refractive index”, Proc. Phys. Soc. London 34, 151–154 (1922)CrossRefGoogle Scholar
  12. 3.12
    P. Langenbeck: “Optical homogeneity measurement by a two angle method”, Optik 28, 592–601 (1968)Google Scholar
  13. 3.13
    F.E. Roberts, P. Langenbeck: “Homogeneity evaluation of very large disks”, Appl. Opt. 8, 2311–2314 (1969)ADSCrossRefGoogle Scholar
  14. 3.14
    R. Hild, S. Kessler, G. Nitzsche: “Influence of schlieren on imaging properties of an optical system: I. Point spread function”, Optik 85, 123–131 (1990)Google Scholar
  15. 3.15
    R. Hild, G. Nitzsche, J. Hebenstreit: “Influence of schlieren on imaging properties of an optical system: II. Modulation transfer function (MTF)”, Optik 85, 177–179 (1990)Google Scholar
  16. 3.16
    Hild, G. Nitzsche, S. Kessler: “Influence of schlieren on image quality of optical systems: III. Isoplanatic and nonisoplanatic imaging”, Optik 86, 1–6 (1990)Google Scholar
  17. 3.17
    C. Hofmann, I. Reichardt: “On the variation of Strehl’s definition by schlieren in optical systems”, Exp. Tech. Phys. 23, 513–523 (1975)Google Scholar
  18. 3.18
    R. Keller: “Die Intensitätsverteilung im Bild eines punktförmigen Objektes bei einer mit Schlieren behafteten Abbildung”, Optik 21, 360–371 (1964)Google Scholar
  19. 3.19
    H. Köhler: “Einfluß von Glasschlieren auf die optische Abbildung”, Optik 21, 339–359 (1964)Google Scholar
  20. 3.20
    E. O’Neill: Introduction to Statistical Optics (Addison Wesley, Reading, MA 1963)Google Scholar
  21. 3.21
    H. Schardin: “Glastechnische Interferenz-und Schlierenaufnahmen”, Glastechn. Ber. 7, 1–12 (1954)Google Scholar
  22. 3.22
    H. Wolter: “Schlieren-, Phasenkontrast-und Lichtschnittverfahren”, in Handbuch der Physik, ed. by S. Flügge, Vol. 24 (Springer, Berlin, Heidelberg 1956) pp. 555–645Google Scholar
  23. 3.23
    H. Fuhrmann, C. Hofmann: “Laserinduzierte Zerstörung optischer Medien”, Feingerätetechnik 26, Teil I: 10–16, Teil II: 58–60 (1977)Google Scholar
  24. 3.24
    H. Hack, N. Neuroth: “Resistance of optical glasses and colored glasses to 3-nsec laser pulses”, Appl. Opt. 21, 3239–3248 (1982)ADSCrossRefGoogle Scholar
  25. 3.25
    J.S. Hayden, H.-J. Hoffmann: “Laser-Gläser ohne Platin-Teilchen”, Werkstoff und Innovation 4, 47–49 (1991)Google Scholar
  26. 3.26
    D. Kitriotis, L.D. Merkle: “Multiple laser induced damage phenomena in silicates”, Appl. Opt. 28, 949–958 (1989)ADSCrossRefGoogle Scholar
  27. 3.27
    W.H. Lowdermilk, D. Milam, F. Rainer: “Laser-induced damage in optical materials”, Nat. Bur. Stand. (US) Spec. Publ. 541 (1978) and Spec. Publ. 568 (1979)Google Scholar
  28. 3.28
    N. Leclerc, C. Pfleiderer, H. Hitzler, S. Thomas, R. Takke, W. Englisch, J. Wol-frum, K.O. Greulich: “KrF eximer laser induced absorption and fluorescence bands in fused silica related to the manufacturing process”, in Advanced Optical Materials, ed. by A. Marker, SPIE 1327, 60–68 (1990)Google Scholar
  29. 3.29
    D.L. Griscom: “Nature of defects and defect generation in optical glasses”, in Radiation Effects in Optical Materials, ed. by P.W. Levy, E.J. Friebele, SPIE 541, 38–59 (1985)Google Scholar
  30. 3.30
    L.E. Ageeva, V.I. Abruzow, E.L. Raaben, M.N. Tolstoi, S.K. Shumilov: “Spectral-luminescence properties of glasses activated by rare-earth elements”, English Translation of the Russian J. Phys. Chem. Glasses 12, 175–184 (1986)Google Scholar
  31. 3.31
    R. Reisfeld: “Inorganic ions in glasses and polycrystalline pellets as fluorescence standard reference materials”, J. Res. NBS 76 A, 613–635 (1972)CrossRefGoogle Scholar
  32. 3.32
    R. Reisfeld: “Radiative and non radiative transitions of rare earth ions in glasses”, in Structure and Bonding, Vol. 22 (Springer, Berlin 1975) pp. 123–125Google Scholar
  33. 3.33
    G.E. Rindone: “Luminescence in the glassy state”, in Luminescence of inorganic solids, ed. by P. Goldberg (Academic Press, New York 1966) pp. 419–464Google Scholar
  34. 3.34
    T. Takahashi: Introduction to Luminescent Glasses, RCA-Review 41, March 1980Google Scholar
  35. 3.35
    C. Bettinali, G. Ferraresso: “Luminescence centers in lead silicate glasses”, J. Non-Cryst. Solids 1, 91–101 and 360–370 (1968)ADSCrossRefGoogle Scholar
  36. 3.36
    S. Parke, R.S. Webb: “The optical properties of thallium, lead, and bismuth in oxide glasses”, J. Phys. Chem. Solids 34, 85–95 (1973)ADSCrossRefGoogle Scholar
  37. 3.37
    M. Kohketsu, H. Kawazoe, M. Yamane: “Luminescence centers in VAD SiO2 glasses sintered under reducing or oxidizing atmospheres”, Diffusion and Defect Data 53–54, 127–133 (1987)CrossRefGoogle Scholar
  38. 3.38
    R. Tohmon, Y. Shimogaichi, S. Munekuni, Y. Ohki, K. Nagasawa, Y. Sakurai, Y. Hama: “The red luminescence in pure silica glasses”, in Proc. SPIE 1128 (Paris, France 1989), paper No. 34, pp. 198–204ADSCrossRefGoogle Scholar
  39. 3.39
    R. Tohmon, Y. Yamasaka, K. Nagasawa, Y. Ohki, Y. Hama: “Cause of the 5.0 eV absorption band in pure silica glasses”, J. Non-Cryst. Solids 95–96, 671–678 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Frank-Thomas Lentes
  • Norbert Neuroth

There are no affiliations available

Personalised recommendations