Advertisement

Spezielle Herz-Kreislaufuntersuchungen

  • M. Kaltenbach
  • G. D. Kneissl
  • W. März
  • M. S. Nauck
  • T. Scheffold
  • B. R. Winkelmann

Zusammenfassung

Seit Einthoven wird die Ableitung von Stromkurven des Herzens von der Körperoberfläche durchgeführt und gehört bis heute zum diagnostischen Rüstzeug (Abb. 3.1.1). Die von der Körperoberfläche abgeleiteten Potentialdifferenzen sind infolge Leitungsbehinderung, besonders durch die lufthaltigen Lungen, etwa hundertmal geringer als die Potentialdifferenzen im Herzmuskel selbst. Auch handelt es sich um eine Summation bzw. Differenz der in verschiedener Richtung ablaufenden Spannungsunterschiede (Summationsvektor). Immer muß bei der Bewertung des Oberflächen-EKGs bedacht werden, daß es sich um die elektrische Begleiterscheinung, nicht aber um den eigentlichen Kontraktionsablauf des Herzens handelt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

  1. 1.
    Becker HJ, Kober G, Fach WA (1996) EKG-Repetitorium. Deutscher Ärzte Verlag, KölnGoogle Scholar
  2. 2.
    Netter FH (1976) Farbatlanten der Medizin, Bd. 1, Herz. Thieme, Stuttgart New YorkGoogle Scholar
  3. 1.
    Bubenheimer P, Kneissl GD (1989) Dopplerechokardiographie. CW-, PW-, HPRF-und Farbdoppler-Methoden, Lehrbuch und Atlas. VCH Verlagsanstalt, Weinheim, S 104Google Scholar
  4. 2.
    Dietrich HA, Mörl H (Hrsg) (1993) Koronare Herzkrankheit. Grundlagen, Diagnostik, Therapie und Rehabilitation für Ärzte in Praxis und Klinik. Wissenschaftliche Verlagsgesellschaft, Stuttgart, S 137–141Google Scholar
  5. 3.
    Feigenbaum H (1972) Clinical applications of echocardiography. Prog Cardiovasc Dis 14: 531PubMedCrossRefGoogle Scholar
  6. 4.
    Heni H-E (1991) Echokardiographische Methoden in der Praxis. Hippokrates Verlag, StuttgartGoogle Scholar
  7. 5.
    Rettenmaier G, Seitz K (1992) Sonographische Differentialdiagnostik, Bd. 2. VCH Verlagsgesellschaft, Weinheim, S 835–836Google Scholar
  8. 6.
    Seward JB, Khandheria BK, Oh JK, Abel MD, Hughes Jr RW, Edwards WD, Nichols BA, Freeman WK, Tajik AJ (1988) Transoesophageal echocardiography: Technique, anatomic, correlations, implementation, and clinical applications. Mayo Clinic Proceedings, pp 649–677Google Scholar
  9. 7.
    Sigwart U et al. (1987) New Engl J Med 316:701PubMedCrossRefGoogle Scholar
  10. 1.
    Braunwald E (1997) Heart disease: a textbook of cardiovascular medicine. 5th ed. WB Saunders Company, Philadelphia London Toronto Montreal Sydney TokyoGoogle Scholar
  11. 2.
    Hamm LF, Crow RS, Stull GA, Hannan P (1989) Safety and characteristics of exercise testing early after acute myocardial infarction. Am J Cardiol 63:1193–1197PubMedCrossRefGoogle Scholar
  12. 3.
    Irving JB, Bruce RA (1977) Exertional hypotension and postexertional ventricular fibrillation in stress testing. Am J Cardiol 39:849–851PubMedCrossRefGoogle Scholar
  13. 4.
    Kaltenbach M, Scherer D, Dowinski S (1982) Complications of exercise testing. A survey in three German speaking countries. Eur Heart J 3:199–202PubMedGoogle Scholar
  14. 5.
    Rochmis P, Blackburn H (1971) Exercise tests. A survey of procedures, safety and litigation experience in approximately 170000 tests. JAMA 217:1061–1066PubMedCrossRefGoogle Scholar
  15. 6.
    Stuart RJ, Ellestad MH (1980) National survey of exercise stress testing facilities. Chest 77:94–97PubMedCrossRefGoogle Scholar
  16. 7.
    Wendt T, Scherer D, Kaltenbach M (1984) Lebensbedrohliche Komplikationen bei 1741106 Ergometrien. Dtsch Med Wochenschr 109:123–127PubMedCrossRefGoogle Scholar
  17. 1.
    Netter FH (1976) Farbatlanten der Medizin, Bd. 1, Herz. Thieme, Stuttgart New YorkGoogle Scholar
  18. 1.
    Amery AP, Brixko D, Clement A et al. (1985) Mortality and morbidity results from the European Working Party on High Blood Pressure in the Elderly trial. Lancet I:1349–1354CrossRefGoogle Scholar
  19. 2.
    Baumgart P, Walger P, Jurgens U, Rahn KH (1990) Reference data for ambulatory blood pressure monitoring: what results are equivalent to the established limits of office blood pressure? Klin Wschr 68:723–727PubMedCrossRefGoogle Scholar
  20. 3.
    Bruce R (1956) Evaluation of functional capacity and exercise tolerance of cardiac patients. Mod Concepts Cardiovasc Dis 25: 321PubMedGoogle Scholar
  21. 4.
    DuBois D, DuBois EF (1916) Clinical Calorimetry. Tenth paper. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 17:863CrossRefGoogle Scholar
  22. 5.
    Ellestad M (1980) Stress testing. EA. Davis Company, Z. edt. PhiladelphiaGoogle Scholar
  23. 6.
    Fletscher GF (ed) (1994) Cardiovascular response to exercise. American Heart Association monograph series. Futura Publishing Company, New YorkGoogle Scholar
  24. 7.
    Forssmann W (1929) Die Sondierung des rechten Herzens. Klin Wschr 8: 2085–2087CrossRefGoogle Scholar
  25. 8.
    Hör G, Krause BJ, Tillmanns HH (1997) Kardiologische Nuklearmedizin. Ecomed, LandsbergGoogle Scholar
  26. 9.
    Holford NHG (1996) A size Standard for pharmacokinetics. Clin Pharmacokinet 5: 329–332CrossRefGoogle Scholar
  27. 10.
    Holter NJ (1957) Radioelectrocardiography. A new technique for cardiovascular study. Ann NY Acad Sci 65:913PubMedCrossRefGoogle Scholar
  28. 11.
    Holter NJ (1961) New method for heart studies. Science 134:1214–1220PubMedCrossRefGoogle Scholar
  29. 12.
    Kahlstorf A (1932) Über eine orthographische Herzvolumenbestimmung. Fortschr Röntgenstr 45:123Google Scholar
  30. 13.
    Kaltenbach M (1974) Die Belastungsuntersuchung von Herzkranken. Kardiologische Diagnostik in der Studienreihe Boehringer Mannheim, Boehringer Mannheim GmbH, MannheimGoogle Scholar
  31. 14.
    Kaltenbach M, Lichtlen P (eds) (1970) Coronary Heart Disease. Thieme,##StuttgartGoogle Scholar
  32. 15.
    Lüders S, Stork I, Schrader J (1996) Praxisnormotonie bei hypertoner Langzeitblutdruckmessung. Nieren Hochdruckkr 25: 361–363Google Scholar
  33. 16.
    Schrader J, Lüders S (1995) Blutdruck-Langzeitmessung. Medikon, MünchenGoogle Scholar
  34. 17.
    Siegenthaler W (Hrsg) (1992) Lehrbuch der inneren Medizin. 3. Aufl. Thieme, Stuttgart New YorkGoogle Scholar
  35. 18.
    Sones FM, Shirey EK (1962) Cine coronary arteriography. Med Concepts Cardiovasc Dis 31: 735Google Scholar
  36. 19.
    Stevens J, Cai J, Pamuk ER et al. (1998) The effect of age on the association between body-mass index and mortality. N Engl J Med 338:1–7PubMedCrossRefGoogle Scholar
  37. 20.
    Timm P (1993) Herzvolumenbestimmung mittels biplaner 2D-Echokardiographie. Inaug. Dissertation, Universität Frankfurt am MainGoogle Scholar
  38. 21.
    Verdeccia P, Porcellati C, Schillaci G et al. (1994) Ambulatory blood pressure: An independent predictor of prognosis in essential hypertension. Hypertension 24: 793–801CrossRefGoogle Scholar
  39. 22.
    Wackers FJT, Souffer R, Zaret B (1997) Nuclear Cardiology. In: Braunwald E (ed) Heart disease: a textbook of cardiovascular medicine. 5th et. WB Saunders Company, Philadelphia London Toronto Montreal Sydney, pp 273–316Google Scholar
  40. 1.
    Bazett HC (1920) An analysis of the time-relations of electrocardiograms. Heart 7:353–369Google Scholar
  41. 2.
    Blau HM, Springer ML (1995) Gene therapy — a novel form of drug delivery. N Engl J Med 353: 1204–1207CrossRefGoogle Scholar
  42. 3.
    Bowles KR, Gajarski R, Porter P et al. (1996) Gene mapping of familial autosomal dominant dilated cardiomyopathy to chromosome 10q21-23. J Clin Invest 98:1355–1360PubMedCrossRefGoogle Scholar
  43. 4.
    Cambien F, Soubrier F (1996) Genetic risk factors of myocardial infarction. In: Mockrin SC (ed) Molecular genetics and gene therapy of cardiovascular diseases. Marcel Dekker, New York, pp 239–269Google Scholar
  44. 5.
    Carrier L, Hengstenberg C, Beckmann JS et al. (1993) Mapping of a novel gene for familial hypertrophic cardiomyopathy to chromosome 11. Nature Genetics 4:311–313PubMedCrossRefGoogle Scholar
  45. 6.
    Dammermann M, Breslow JL (1995) Genetic basis of lipoprotein disorders. Circulation 91: 505–512CrossRefGoogle Scholar
  46. 7.
    Durand JB, Bachinski LL, Bieling LC et al. (1995) Localization of a gene responsible for familial dilated cardiomyopathy to chromosome 1q32. Circulation 92: 3387–3389PubMedCrossRefGoogle Scholar
  47. 8.
    Evans W (1949) Familial cardiomegaly. Br Heart J 11:68–82PubMedCrossRefGoogle Scholar
  48. 9.
    Geisterfer-Lowrence AAT, Kass S, Tanigawa G et al. (1990) A molecular basis for familial hypertrophicardiomyopathy: a β-cardiac myosin heavy chain gene missense mutation. Cell 62: 999–1006CrossRefGoogle Scholar
  49. 10.
    Großmann M, Raper SE, Kozarsky K et al. (1994) Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolemia. Nature Genet 6: 335–341CrossRefGoogle Scholar
  50. 11.
    Haverkamp W, Schulze-Bahr E, Härdt M et al. (1997) QT-Syndrome. Dt Ärztbl 94: 534–539Google Scholar
  51. 12.
    Jarcho JA, McKenna W, Pare JAP et al. (1989) Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14q11. N Engl J Med 321:1372–1378PubMedCrossRefGoogle Scholar
  52. 13.
    Jervell A, Lange-Nielsen F (1957) Congenital deaf mutism, functional heart disease with prolongation of the QT interval, and sudden death. Am Heart J 54: 59–78PubMedCrossRefGoogle Scholar
  53. 14.
    Kass S, MacRae C, Graber HL et al. (1994) A gene defect that caused conduction system disease and dilated cardiomyopathy maps to Chromosomen 1p1-1q1. Nature Genet 7: 546–551PubMedCrossRefGoogle Scholar
  54. 15.
    Kelly DP, Whelan AJ, Ogden ML et al. (1990) Molecular characterisation of medium-chain acyl-CoA dehydrogenase deficiency. Proc Natl Acad Sci USA 87:9236–9240PubMedCrossRefGoogle Scholar
  55. 16.
    Kimura A, Harada H, Park J-E et al. (1997) Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nature Genetics 16:379–382PubMedCrossRefGoogle Scholar
  56. 17.
    Krajinovic M, Pinamonti B, Sinagra G et al. (1995) Linkage of familial dilated cardiomyopathy to chromosome 9. Heart Muscle Disease Study Group. Am J Hum Genet 57:846–852PubMedGoogle Scholar
  57. 18.
    Lifton RP (1996) Molecular genetics of human hypertension. In: Mockrin SC (ed) Molecular genetics and gene therapy of cardiovascular diseases. Marcel Dekker, New York, pp 111–134Google Scholar
  58. 19.
    Lifton RP (1996) Molecular genetics of human blood pressure variation. Science 272:676–680PubMedCrossRefGoogle Scholar
  59. 20.
    Lindpaintner K, Pfeffer MA, Kreutz R et al. (1995) A prospective evaluation of an angiotensin-converting-enzyme gene polymorphism and the risk of ischemic heart disease. N Engl J Med 332: 706–711PubMedCrossRefGoogle Scholar
  60. 21.
    MacRae C, Ghaisas N, Kass S et al. (1995) Familial hypertrophic cardiomyopathy with Wolff-Parkinson-White syndrome maps to al locus on chromosom 7q3. J Clin Invest 96:1216–1220PubMedCrossRefGoogle Scholar
  61. 22.
    Maron BJ, Bonow RO, Cannon RO et al. (1987) Hypertrophic cardiomyopathy: interrelations of clinical manifestations, pathophysiology, and therapy. N Engl J Med 316:780–789PubMedCrossRefGoogle Scholar
  62. 23.
    März W, Baumstark MW, Scharnagl H et al. (1993) Accumulation of „small dense“ low density lipoproteins in a homozygous patient with familial defective apolipoprotein B-100 results from heterogenous interaction of LDL subfractions with the LDL receptor. J Clin Invest 92: 2922–2933.PubMedCrossRefGoogle Scholar
  63. 24.
    März W, Peschke B, Ruzicka V et al. (1993) Type III hyperlipoproteinemia acquired by liver transplantation. Transplantation 55:284–288PubMedCrossRefGoogle Scholar
  64. 25.
    McKenna WJ, Thiene G, Nava A et al. (1994) Diagnosis of arrythmogenic right ventricular dysplasia/cardiomyopathy. Task force of the working group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology. Br Heart J 71:215–218PubMedCrossRefGoogle Scholar
  65. 26.
    Mestroni L, Krajinovic M, Severini GM et al. (1995) Molecular genetics of dilated cardiomyopathies. Eur Heart J 16 (Suppl) O: 5–9PubMedCrossRefGoogle Scholar
  66. 27.
    Mockrin SC (1996) Molecular genetics and gene therapy of cardiovascular diseases. Marcel Dekker, New YorkGoogle Scholar
  67. 28.
    Moss AJ, Schwartz PJ, Crampton RS et al. (1991) The long QT syndrome — prospective longitudinal study of 328 families. Circulation 84:1136–1144PubMedCrossRefGoogle Scholar
  68. 29.
    Mullis K, Faloona F, Scharf S et al. (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Hart Symp Quant Biol 51 Pt 1:263–273CrossRefGoogle Scholar
  69. 30.
    Muntoni F, Cau M, Ganau A et al. (1993) Deletion of the dystrophin muscle-promoter region dysociated with t-linked dilated cardiomyopathy. N Engl J Med 329: 921–925PubMedCrossRefGoogle Scholar
  70. 31.
    Naraghi R, Schuster H et al. (1997) Neurovascular compression at the ventrolateral medulla in autosomal dominant hypertension and brachydactyly. Stroke 28:1749–1754PubMedCrossRefGoogle Scholar
  71. 32.
    Olson TM, Keating MT (1996) Mapping a cardiomyopathy locus to chromosome 3p22-p25. J Clin Invest 97: 528–532PubMedCrossRefGoogle Scholar
  72. 33.
    Olson TM, Keating MT (1997) Defining the molecular genetic basis of idiopathic dilated cardiomyopathy. Trends Cardiovasc Med 7:60–63PubMedCrossRefGoogle Scholar
  73. 34.
    Olson TM, Michels VV, Thibodeau SN et al. (1998) Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280: 750–752PubMedCrossRefGoogle Scholar
  74. 35.
    Ozawa T, Tanaka M, Sugiyama S et al. (1990) Multipe mitochondrial DNA deletions exist in cardiomyocytes of patients with hypertrophic or dilated cardiomyopathy. Biochem Biophys Res Commun 170:830–836PubMedCrossRefGoogle Scholar
  75. 36.
    Poetter K, Jiang H, Hassanzadeh S et al. (1996) Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nature Genetics 13:63–69PubMedCrossRefGoogle Scholar
  76. 37.
    Raghunath M, Nienaber C, Kodolitsch Y (1997) 100 Jahre Marfan-Syndrom — eine Bestandsaufnahme. Dt Ärztebl 94:656–662Google Scholar
  77. 38.
    Rampazzo A, Nava A, Danieli GA et al. (1994) The gene for arrhythmogenic right ventricular cardiomyopathy maps to chromosome 14q23-q24. Hum Mol Genet 3: 959–962PubMedCrossRefGoogle Scholar
  78. 39.
    Rampazzo A, Nava A, Erne P et al. (1995) A new locus for arrhythmogenic right ventricular cardiomyopathy (ARVD2) maps to chromosome 1q42-q43. Hum Mol Genet 4: 2151–2154PubMedCrossRefGoogle Scholar
  79. 40.
    Report of the WHO/IFSC task force on the definition and classification of cardiomyopathies (1980) Br Heart J 44: 672–673CrossRefGoogle Scholar
  80. 41.
    Richardson P, McKenna W, Bristow M et al. (1996) Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of Cardiomyopathies. Circulation 93: 841–842PubMedCrossRefGoogle Scholar
  81. 42.
    Rocchiccioli F, Wanders RJ, Aubourg P et al. (1990) Deficiency of long-chain 3-hydroxylacyl-CoA dehydrogenase: a cause of lethalmyopathy and cardiomyopathy in early childhood. Pediatr Res 28:657–662PubMedCrossRefGoogle Scholar
  82. 43.
    Romano C, Gemme G, Pongiglione R (1963) Aritmie cardiache rare dell’eta pediatrica. Clin Pediatr (Phila) 45: 656–683Google Scholar
  83. 44.
    Schäfer JR, Scharnagl H, Baumstark MW et al. (1997) Homozygous familial defective apolipoprotein B-100: Enhanced removal of apolipoprotein E containing low density lipoproteins and decreased production of low density lipoproteins. Arterioscler Thromb Vasc Biol 17: 348–353CrossRefGoogle Scholar
  84. 45.
    Schuster H, Wienker TE et al. (1996) Severe autosomal dominant hypertension and brachydactyly in a unique Turkish kindred maps to human Chromosomen 12. Nat Genet 13:98–100PubMedCrossRefGoogle Scholar
  85. 46.
    Severini GM, Krajinovic M, Pinamonti B et al. (1996) A new locus for arrhythmogenic right ventricular dysplasia on the long arm of chromosome 14. Genomics 31:193–200PubMedCrossRefGoogle Scholar
  86. 47.
    Thierfelder L, Watkins H, MacRae C et al. (1994) alpha-Tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 77: 701–712PubMedCrossRefGoogle Scholar
  87. 48.
    Tybjaerg-Hensen A, Steffensen R, Meinertz H et al. (1998) Association of mutations in the apolipoprotein B gene with hypercholesterolemia and the risk of ischemic heart disease. N Engl J Med 338:1577–1584CrossRefGoogle Scholar
  88. 49.
    Von der Leyen HE, Dzau VJ (1996) Experimentelle Ansätze zur gentherapeutischen Beeinflussung des vaskulären Remodellings. Z Kardiol 84: 791–797Google Scholar
  89. 50.
    Ward OC (1964) A new familial cardiac syndrome in children. J Ir Med Assoc 54:103–106PubMedGoogle Scholar
  90. 51.
    Watson JD, Crick FHC (1953) Molecular structure of nucleic acids — a structure for deoxyribose nucleic acid. Nature 171:737–738PubMedCrossRefGoogle Scholar
  91. 52.
    Winkelmann BR, Nauck M, Klein B et al. (1996) Deletion polymorphism of the angiotensin 1-converting enzyme gene is associated with increased plasma angiotensin-converting enzyme activity but not with increased risk for myocardial infarction and coronary artery disease. Ann Intern Med 125:19–25PubMedGoogle Scholar
  92. 53.
    Winkelmann BR, Russ AP, Nauck M et al. (1999) Angiotensinogen M235T polymorphism is associated with plasma angiotensinogen and cardiovascular disease. Am Heart J 137:698–705PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • M. Kaltenbach
  • G. D. Kneissl
  • W. März
  • M. S. Nauck
  • T. Scheffold
  • B. R. Winkelmann

There are no affiliations available

Personalised recommendations