Skip to main content

The molecular mechanisms of inherited hypercholesterolemia

  • Conference paper
From Molecule to Men

Abstract

Both observational and intervention studies have proven that hypercholesterolemia is a major risk factor for cardiovascular disease. Genetic factors are significant determinants of cholesterol and LDL cholesterol. Among the sources of genetic variation are monogenetic disorders resulting in severe clinical phenotypes and genetic polymorphisms affecting the metabolism of plasma lipoproteins. The best characterized monogenetic disorders of lipoprotein metabolism are familial hypercholesterolemia and familial defective apo B-100. In familial hypercholesterolemia (FH), the primary defect is a mutation in the gene encoding the LDL receptor. More than 300 mutant allels distorting receptor function are known to date. This genetic heterogeneity has to be accounted in the diagnosis of familial hypercholesterolemia at the molecular level. Familial defective apo B-100 has for a long time been considered to result from one point mutation changing codon 3500 from arginine to glutamine. Recent work, however, shows that this disorder is heterogeneous at the genetic level as well and that approaches to diagnose familial defective apo B-100 by probing for the arg3500→gln substitution will fail to detect other, more rare variants of apo B-100 also associated with decreased binding of LDL to LDL receptors. The most extensively studied genetic polymorphism affecting LDL cholesterol is the polymorphism of apolipoprotein E. Three common alleles exist at the apo E gene locus, namely apo E2, apo E3, and apo E4. Apo E3 represents the wild type allele. Compared to apo E3 homozygotes, carriers of one or two alleles of apo E4 have slightly higher LDL cholesterol concentrations whereas carriers of apo E2 tend to have lower LDL cholesterol. A small proportion of apo E2 homozygotes, however, develope type III hyperlipoproteinemia, a highly atherogenic form disorder of lipoprotein metabolism characterized by the accumulation of remnant particles derived from the incomplete catabolism of triglyceride-rich lipoproteins. In very rare cases, type III hyperlipoproteinemia may be transmitted in an autosomal dominant fashion. The common feature of mutations underlying this form of type III hyperlipoproteinemia appears to be that they severly impair the interaction of apo E with heparin sulfate proteoglycans rather than with lipoprotein receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aalto-Setälä K, Koivisto U-M, Miettinen TA, Gylling H, Keseniämi YA, Pyörälä K, Ebeling T, Mononen I, Turtola H, Viikari J, Kontula K (1992) Prevalence and geographical distribution of major gene rearrangements in Finland. J Intern Med 231: 227

    Article  PubMed  Google Scholar 

  2. Beisiegel U, Weber W, Ihrke G, Herz J, Stanley KK (1989) The LDL-receptor-related-protein, LRP, is an apolipoprotein E binding protein. Nature 341: 162–164

    CAS  Google Scholar 

  3. Bennett MK, Lopez JM, Sanchez HB, Osborne TF (1995) Sterol regulation of fatty acid synthase promoter — coordinate feedback regulation of two major lipid pathways. J Biol Chem 270: 25578–25583

    Article  PubMed  CAS  Google Scholar 

  4. Boren J, Lee I, Zhu W, Arnold K, Taylor S, Innerarity TL (1988) Identification of low density lipoprotein receptor-binding site in apolipoprotein B100 and the modulation of its binding activity by the carboxyl terminus in familial defective apo B-100. J Clin Invest 101: 1084–1093

    Article  Google Scholar 

  5. Brown M, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane bound transcription factor. Cell 89: 331–340

    Article  PubMed  CAS  Google Scholar 

  6. Brown MS, Goldstein JL (1986) A receptor mediated pathway for cholesterol homeostasis. Science 232: 34–47

    Article  PubMed  CAS  Google Scholar 

  7. Choong M-L, Koay ESC, Khoo K-L, Khaw M-C, Sethi SK (1997) Denaturing gradient-gel electrophoresis screening of familial defective apolipoprotein B-100 in a mixed Asian cohort: two cases of arginine 3500-> tryptophan mutation associated with a unique haplotype. Clin Chem 43: 916–923

    PubMed  CAS  Google Scholar 

  8. Davignon J, Gregg RE, Sing CF (1988) Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis 8: 1–21

    CAS  Google Scholar 

  9. de Knijff P, van den Maagdenberg AMJM, Frants RR, Havekes LM (1994) Genetic heterogeneity of apolipoprotein E and its influence on plasma lipid and lipoprotein levels. Hum Mut 4: 178–194

    CAS  Google Scholar 

  10. Dong LM, Parkin S, Trakhanov SD, Rupp B, Simmons T, Arnold KS, Newhouse YM, Innerarity TL, Weisgraber KH (1996) Novel mechanism for defective binding of apolipoprotein E2 in type III hyperlipoproteinemia. Nat Struct Biol 3: 718–722

    Article  PubMed  CAS  Google Scholar 

  11. Dong LM, Weisgraber KH (1996) Human apolipoprotein E4 domain interaction. Arginine 61 and glutamic acid 255 interact to direct the preference for very low density lipoproteins. J Biol Chem 271: 19053–19057

    Article  PubMed  CAS  Google Scholar 

  12. Feussner G, Albanese M, Mann WA, Valencia A, Schuster H (1996) Apolipoprotein E2 (Arg l36Cys), a variant of apolipoprotein E associated with late-onset dominance of type III hyperlipoproteinemia. Eur J Clin Invest 1996: 13–23

    Google Scholar 

  13. Feussner G, Scharnagl H, Scherbaum C, Acar J, Dobmeyer J, Lohrmann J, Wieland H, März W (1996) Apolipoprotein E5-Heidelberg (Glu212Lys): Increased binding to cell surface proteoglycans, but decreased uptake and degradation in cultured fibroblasts. J Lipid Res 37: 1632–1645

    PubMed  CAS  Google Scholar 

  14. Funke H, Rust S, Seedorf U, Brennhausen B, Chirazi A, Motti C, Assmann G (1992) Hozygosity for familial defective apolipoprotein B-100 (FDB) is associated with lower plasma cholesterol concentrations than homozygosity for familial hypercholesterolemia (FH). Circulation 86 (Suppl I): 1–691

    Google Scholar 

  15. Gaffney D, Reid JM, Cameron IM, Vass K, Caslake MJ, Shepherd J, Packard CJ (1995) Independent mutations at codon 3500 of the apolipoprotein B gene are associated with hyperlipidemia. Arterioscler Thromb Vase Biol 15: 1025–1029

    Article  CAS  Google Scholar 

  16. Gerdes LU, Gerdes C, Hansen PS, Klausen IC, Faergeman O (1996) Are men carrying the apolipoprotein epsilon 4- or epsilon 2 allele less fertile than epsilon 3 epsilon 3 genotypes? Hum Genet 98: 239–242

    Article  PubMed  CAS  Google Scholar 

  17. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343: 425å30

    Article  PubMed  Google Scholar 

  18. Goldstein JL, Hobbs HH, Brown MS (1995) Familial hypercholesterolemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic Basis and Molecular Basis of Inherited Diasease. Vol. I. McGraw Hill Book Co., Orlando, pp 1981–2030

    Google Scholar 

  19. Hanlon CS, Rubinsztein DC (1995) Arginine residues at codons 112 and 158 in the apolipoprotein E gene correspond to the ancestral state in humans. Athersosclerosis 112: 85–90

    CAS  Google Scholar 

  20. Herz J, Hamann U, Rogne S, Myklebost O, Gausepohl H, Stanley KK (1988) Surface location and high affinity for calcium of a 500 kD liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO J 7: 4119–4127

    PubMed  CAS  Google Scholar 

  21. Hobbs HH, Brown MS, Goldstein JL (1992) Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat 1: 445–466

    Article  PubMed  CAS  Google Scholar 

  22. Hoffer MJ, Niththyananthn S, Naoumova RP, Kibirige MS, Frants RR, Havekes LM, Thompson GR (1996) Apolipoprotein El-Hammersmith (Lysl46→Asn, Argl47→Trp), due to a dinucleotide substitution, is associated with early manifestation of dominant type III hyperlipoproteinemia. Atherosclerosis 124:183–189

    Article  PubMed  CAS  Google Scholar 

  23. Huang Y, von Eckardstein A, Wu S, Maeda N, Assmann G (1994) A plasma lipoprotein containing only apo E and with gamma-mobility on electrophoresis releases cholesterol from cells. Proc Natl Acad Sci USA 91: 1834–1838

    CAS  Google Scholar 

  24. Innerarity TL, Weisgraber KH, Arnold KS, Mahley RW, Krauss RM, Vega GL, Grundy SM (1987) Familial defective apolipoprotein B-100: Low density lipoproteins with abnormal receptor binding. Proc Natl Acad Sci USA 84: 6919–6923

    Article  PubMed  CAS  Google Scholar 

  25. Ji Z-S, Fazio S, Mahley RW (1994) Variable heparan sulfate proteoglycan binding of apolipoprotein E variants may modulate the expression of type III hyperlipoproteinemia. J Biol Chem 269: 13421–13428

    CAS  Google Scholar 

  26. Kim DH, Iijma H, Goto K, Sakai J, Ishii H, Kim HJ, Suzuki H, Kondo H, Saeki S, Yamamoto T (1996) Human apolipoprotein E receptor 2. J Biol Chem 271: 8373–8380

    CAS  Google Scholar 

  27. Knott T, Rail SC, Innerarity TL, Jacobson SF, Urdea MS, Levy-Wilson B, Powell LM, Pease RJ, Eddy R, Nakai H, Byers M, Priestly LM, Robertson E, Rail LB, Betsholtz C, Shows TB, Mahley RW, Scott J (1985) Human apolipoprotein B: structure of carboxyl-terminal domains, sites of gene expression, and chromosomal localization. Science 230: 37–43

    Article  PubMed  CAS  Google Scholar 

  28. Lalazar A, Weisgraber KH, Rail SC, Giladi H, Innerarity TL, Levanon AZ, Boyles JK, Amit B, Gorecki M, Mahley RW, Vogel T (1988) Site-specific mutagenesis of human apolipoprotein E. Receptor binding activity of variants with single amino acid substitutions. J Biol Chem 263: 3542–3545

    CAS  Google Scholar 

  29. Lehrman MA, Schneider WJ, Brown MS, Davis CG, Elhammer A, Russel DW, Goldstein JL (1987) The Lebanese allele at the low density lipoprotein receptor locus. Nonsense mutation produces truncated receptor that is retained in endoplasmic reticulum. J Biol Chem 262: 401–410

    PubMed  CAS  Google Scholar 

  30. Leitersdorf AK, Van Der Westhuyzen DR, Coetzee GA, Hobbs HH (1989) Two common low density lipoprotein receptor gene mutations cause familial hypercholesterolemia in Afrikaners. J Clin Invest 84: 954

    Article  PubMed  CAS  Google Scholar 

  31. Leitersdorf E, Reshef A, Meiner V, Dann EJ, Beigel Y, van Roggen FG, van der Westhuyzen DR, Coetzee GA (1993) A missense mutation in the low density lipoprotein receptor gene causes familial hypercholesterolemia in Sephardic Jews. Hum Genet 91: 141

    Article  PubMed  CAS  Google Scholar 

  32. Leitersdorf E, Tobin EJ, Davignon J, Hobbs HH (1990) Common low-density lipoprotein receptor mutations in the French Canadian population. J Clin Invest 84: 1014

    Article  Google Scholar 

  33. Lopez JM, Bennet MK, Sanchez HB, Rosenfeld JM, Osborne TF (1996) Sterol regulation of acetyl CoA carboxylase: a mechanism for coordinate control of cellular lipid. Proc Natl Acad Sci USA 93: 1049–1053

    Article  PubMed  CAS  Google Scholar 

  34. Ludwig EH, Hopkins PN, Allen A, Wu LL, Williams RR, Anderson JL, Ward RH, Lalouel J-M, Innerarity TL (1997) Association of genetic variations in apolipoprotein B with hypercholesterolemia, coronary artery disease, and receptor binding of low density lipoproteins. J Lipid Res 38: 1361–1373

    PubMed  CAS  Google Scholar 

  35. Mahley RW (1988) Apolipoprotein E: Cholesterol transport protein with expanding role in cell biology. Science 240: 622–630

    Article  PubMed  CAS  Google Scholar 

  36. Mann WA, Meyer N, Weber W, Meyer S, Greten H, Beisiegel U (1995) Apolipoprotein E isoforms and rare mutations: parallel reduction in binding to cells an to heparin reflects severity of associated type III hyper- lipoproteinemia. J Lipid Res 36: 517–525

    CAS  Google Scholar 

  37. März W, Baumstark MW, Scharnagl H, Ruzicka V, Buxbaum S, Herwig J, Pohl T, Russ A, Schaaf L, Berg A, Böhles H-J, Usadel KH, GroB W (1993) Accumulation of “small dense” low density lipoproteins in a homozygous patient with familial defective apolipoprotein B-100 results from heterogenous interaction of LDL-subfractions with the LDL receptor. J Clin Invest 92: 2922–2933

    Article  PubMed  Google Scholar 

  38. März W, Hoffmann MM, Scharnagl H, Fisher E, Chen M, Nauck MS, Feussner G, Wieland H (1998) Apolipoprotein E2 (Argl36→Cys) mutation in the receptor binding domain of apo E is not associated with dominant type III hyperlipoproteinemia. J Lipid Res 39: 658–669

    Google Scholar 

  39. März W, Peschke B, Ruzicka V, Siekmeier R, Groβ W, Scheuermann E (1993) Type III hyperlipoproteinemia acquired by by liver transplantation. Transplantation 55: 284–288

    Article  PubMed  Google Scholar 

  40. März W, Ruzicka V, Pohl T, Usadel KH, Groβ W (1992) Familial defective apolipoprotein B-100: mild hypercholesterolemia without atherosclerosis in a homozygous patient. Lancet 340: 1362

    Article  PubMed  Google Scholar 

  41. Medh JD, Bowen SL, Fry GL, Ruben S, Andracki M, Inoue I, Lalouel JM, Strickland DK, Chappel DA (1996) Lipoprotein lipase binds to low density lipoprotein receptors and induces receptor-mediated catabolism of very low density lipoproteins in vitro. J Biol Chem 271: 17073–17080

    Article  PubMed  CAS  Google Scholar 

  42. Minnich A, Weisgraber KH, Newhouse Y, Dong L-M, Fortin L-J, Tremblay M, Davignon J (1995) Identification and characterization of a novel apolipoprotein E variant, apolipoprotein E3’ (Argl36→His): Association with mild dyslipidemia and double pre-P very low density lipoproteins. J Lipid Res 36: 57–66

    PubMed  CAS  Google Scholar 

  43. Myant NB (1993) Familial defective apolipoprotein B-100: a review, including some comparisons with familial hypercholesterolaemia. Atherosclerosis 104: 1–18

    Article  PubMed  CAS  Google Scholar 

  44. Nissen H, Guldberg P, Hansen AB, Petersen NE, Horder M (1996) Clinically applicable mutation screening in familial hypercholesterolemia. Hum Mutat 8: 168–177

    Article  PubMed  CAS  Google Scholar 

  45. Orth M, Wei W, Funke H, Steinmetz A, Assmann G, Nauck M, Dierkes J, Ambrosch A, Weisgraber KH, Mahley RW, Wieland H, Luley C (1999) Effects of a frequent apolipoprotein E isoform, apo E4-Freiburg (Leu28→Pro) on lipoproteins and the prevalence of coronary artery disease in Caucasians. Arterioscler Thromb Vase Biol (in press)

    Google Scholar 

  46. Paik YK, Chang DJ, Reardon CA, Davies GE, Mahley RW, Taylor JM (1985) Nucleotide sequence and structure of the human apolipoproteion E gene. Proc Natl Acad Sci USA 82: 3445–3449

    Article  CAS  Google Scholar 

  47. Pocovi M, Cenarro A, Civeira F, Myers RH, Casao E, Esteban M, Ordovas JM (1996) Incomplete dominance of type III hyperlipoproteinemia is associated with the rare apolipoprotein E2 (Argl36→Ser) variant in multigenerational pedigree studies. Atherosclerosis 122: 33–46

    Article  PubMed  CAS  Google Scholar 

  48. Pullinger CR, Hennessy LK, Chatterton JE, Liu W, Love JA, Mendel CM, Frost PH, Malloy MJ, Schumaker VN, Kane JP (1995) Familial ligand-defective apolipoprotein B. Identification of a new mutation that decreases LDL receptor binding affinity. J Clin Invest 95: 1225–1234

    Article  PubMed  CAS  Google Scholar 

  49. Rabes JP, Varret M, Saint-Jore B, Erlich D, Jondeau G, Krempf M, Giraudet P, Junien C, Boileau C (1997) Familial ligand-defective apolipoprotein B-100: simultaneous detection of the Arg3500→Gln and Arg3531→Cys mutations in a French population. Hum Mut 10: 160–163

    Article  PubMed  CAS  Google Scholar 

  50. Rall SC, Weisgraber KH, Innerarity TL, Mahley RW (1982) Structural basis for receptor binding heterogeneity of apolipoprotein E from type III hyperlipoproteinemic subjects. Proc Natl Acad Sci USA 79: 4696–4700

    CAS  Google Scholar 

  51. Rall SC, Weisgraber KH, Mahley RW (1982) Human Apolipoprotein E. The complete amino acid sequence. J Biol Chem 257: 4171–4178

    CAS  Google Scholar 

  52. Richard P, Thomas G, de Zulueta MP, De Gennes J-L, Thomas M, Cassaigne A, Béréziat G, Iron A (1994) Common and rare genotypes of human apolipoprotein Ev determined by specific restriction profiles of polymerase chain reaction-amplified DNA. Clin Chem 40: 24–29

    PubMed  CAS  Google Scholar 

  53. Roses AD (1997) Apolipoprotein E, a gene with complex biological interactions in the aging brain. Neurobiol Dis 4: 170–185

    Article  PubMed  CAS  Google Scholar 

  54. Ruzicka V, März W, Russ A, Mondorf W, Groβ W (1993) Characterization of the gene for apolipoprotein E5-Frankfurt (Gln81→Lys, Cys112→Arg by polymerase chain reaction, restriction isotyping and temperature gradient gel electrophoresis. Electrophoresis, Electrophoresis 14: 1032–1037

    Article  PubMed  CAS  Google Scholar 

  55. Saito A, Pietromonaca S, Kwor-chie Loo A, Farquhar M (1994) Complete cloning and sequencing of rat gp330/‘megalin’, a distinctive member of the low density lipoprotein receptor gene family. Proc Natl Acad Sci USA 91: 9725–9729

    Article  PubMed  CAS  Google Scholar 

  56. Schäfer J, Scharnagl H, Baumstark M, Steinmetz A, Schweer H, Zech LA, Seyberth HJ, März W (1997) Homozygous familial defective apolipoprotein B-100: Enhanced removal of apolipoprotein E containing low density lipoprotein precursors and decreased production of low density lipoproteins. Arterioscler Thromb Vase Biol 17: 348–353

    Article  Google Scholar 

  57. Schneider WJ, Kovanen PT, Brown MS, Goldstein JL, Utermann G, Weber W, Havel RJ, Kotite L, Kane JP, Innerarity TL, Mahley RW (1981) Familial dysbetalipoproteinemia: Abnormal binding of mutant apolipoprotein E to low density lipoprotein receptors of human fibroblasts and membranes from liver and adrenals of rats, rabbits and cows. J Clin Invest 68: 1075–1085

    Article  PubMed  CAS  Google Scholar 

  58. Scott J (1995) A place in the world for RNA editing. Cell81: 833–836

    Article  Google Scholar 

  59. Soria LF, Ludwig EH, Clarke HRG, Vega GL, Grundy SM, McCarthy BJ (1989) Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc Natl Acad Sci USA 86: 587–591

    Article  PubMed  CAS  Google Scholar 

  60. Suehiro T, Yoshida K, Yamano T, Ohno F (1990) Identification and characterization of a new variant of apolipoprotein E (apoE-Kochi). Jpn J Med 29: 587–594

    Article  CAS  Google Scholar 

  61. Takahashi S, Kawabayasi Y, Nakai T, Sakai J, Yamamoto T (1992) Rabbit very low density lipoprotein receptor; A low density lipoprotein receptor like protein with distinct ligand specificity. Proc Natl Acad Sci USA 89: 9252–9256

    Article  PubMed  CAS  Google Scholar 

  62. Teng B, Burant CF, Davidson NO (1993) Molecular cloning of the apolipoprotein B mRNA editing protein. Science 260: 1816–1819

    Article  PubMed  CAS  Google Scholar 

  63. Utermann G, Hees M, Steinmetz A (1977) Polymorphism of apolipoprotein E and occurrence of dysbeta- lipoproteinaemia in man. Nature 269: 604–607

    Article  PubMed  CAS  Google Scholar 

  64. Walden CC, Huff MW, Leiter LA, Connelly PW, Hegele RA (1994) Detection of a new apolipoprotein-E mutation in type III hyperlipoproteinemia using deoxyribonucleic acid restriction typing. J Clin Endorinol Metab 78: 699–704

    Article  CAS  Google Scholar 

  65. Wardell MR, Brennan SO, Janus ED, Fraser R, Carrel RW (1987) Apolipoprotein E2-Christchurch (136Arg→Ser). New variant of human apolipoprotein E in a patient with type III hyperlipoproteinemia. J Clin Invest 80: 483–490

    Article  PubMed  CAS  Google Scholar 

  66. Weisgraber KH, Rail SC, Mahley RW (1981) Human E apoprotein heterogeneity. Cysteine arginine interchanges in the amino acid sequence of the apoE isoforms. J Biol Chem 256: 9077–9083

    PubMed  CAS  Google Scholar 

  67. Weisgraber KH, Rail SC, Mahley RW, Milne RW, Marcel YL, Sparrow JT (1986) Human apolipoprotein E. Determination of the heparin binding sites of apolipoprotein E3. J Biol Chem 261: 2068–2076

    PubMed  CAS  Google Scholar 

  68. Wenham PR, Henderson BG, Penney MD, Ashby JP, Rae PWH, Walker SW (1997) Familial ligand-defective apolipoprotein B-100: detection, biochemical features and haplotype analysis of the R3531C mutation in the UK. Atherosclerosis 129: 185–192

    Article  PubMed  CAS  Google Scholar 

  69. Wieland H, Funke H, Krieg J, Luley C (1991) Apo E3-Freiburg and apo E4-Freiburg are two genetic apo E variants which are caused by exchanges of uncharged amino acids and do not appear to be associated with lipid disorders or heart disease. In: Abstract Book of the 9th International Symposium on Atherosclerosis, Rosement IL., p 164

    Google Scholar 

  70. Yamazaki H, Bujo H, Kusonoki J, Seimiya K, Kanaki T, Morisaki N, Schneider WJ, Saito Y (1996) Elements of neural adhesion molecules and a yeast vascular protein sorting receptor are present in a novel mammalian low density lipoprotein receptor family member. J Biol Chem 271: 25761–25768

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

März, W., Nauck, M.S., Fisher, E., Hoffmann, M.M., Wieland, H. (2000). The molecular mechanisms of inherited hypercholesterolemia. In: Zehender, M., Just, H., Breithardt, G. (eds) From Molecule to Men. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57724-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57724-6_13

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-63338-6

  • Online ISBN: 978-3-642-57724-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics