Manipulation of SERCA2a in the heart by gene transfer

  • F. Del Monte
  • S. E. Harding
  • R. J. Hajjar


In the myopathic heart, a number of abnormalities have been delineated (Fig. 1) at the cellular level [25-33, 35, 38-43]. These include changes at the level of the sarcolemma, sarcoplasmic reticulum, myofilaments, and mitochondria, all of which contribute to depressed contractile function and reserve [25-33, 35, 38-43]. Identifying the mechanisms by which these changes contribute to the observed pathology is frequently confounded by simultaneous alterations in multiple signaling pathways in the complex milieu of the failing heart. Targeting genes to the heart through somatic gene transfer allows us to identify and characterize the molecular changes of diseases as well as to manipulate the targeted pathways [34, 36, 37].


Gene Transfer Sarcoplasmic Reticulum Ryanodine Receptor Calcium Handling Human Heart Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Askari F, Hitomi E, Thiney M, Wilson JM (1995) Retrovirus-mediated expression of HUG Brl in Crigler-Najjar syndrome type I human fibroblasts and correction of the genetic defect in Gunn rat hepatocytes. Gene Therapy 2:203–208PubMedGoogle Scholar
  2. 2.
    Balke CW (1996) Spontaneous Ca2+ oscillations and waves in pulmonary vascular endothelial cells [editorial; comment]. Circ Res 79:909–910PubMedCrossRefGoogle Scholar
  3. 3.
    Balke CW, Egan TM, Wier WG (1994) Processes that remove calcium from the cytoplasm during excitation-contraction coupling in intact rat heart cells. J Physiol 474:447–462PubMedGoogle Scholar
  4. 4.
    Balke CW, Gold MR (1992) Calcium channels in the heart: an overview. Heart Dis Stroke 1:398–403PubMedGoogle Scholar
  5. 5.
    Balke CW, Gold MR (1993) Excitation-contraction-relaxation coupling in the normal and failing heart. Heart Dis Stroke 2:150–155PubMedGoogle Scholar
  6. 6.
    Balke CW, Rose WC, Marban E, Wier WG (1992) Macroscopic and unitary properties of physiological ion flux through T-type Ca2+ channels in guinea-pig heart cells. J Physiol 456:247–265PubMedGoogle Scholar
  7. 7.
    Balke CW, Shorofsky SR (1998) Alterations in calcium handling in cardiac hypertrophy and heart failure. Cardiovasc Res 37:290–299PubMedCrossRefGoogle Scholar
  8. 8.
    Barr E, Carroll J, Kalynych AM, Tripathy SK, Kozarsky K, Wilson JM, Leiden JM (1994) Efficient catheter-mediated gene transfer into the heart using replication-defective adenovirus. Gene Therapy 1:51–58PubMedGoogle Scholar
  9. 9.
    Barry WH, Bridge JHB (1993) Intracellular calcium homeostasis in cardiac myocytes. Circulation 87:1806–1815PubMedCrossRefGoogle Scholar
  10. 10.
    Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell R (1997) Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1324PubMedCrossRefGoogle Scholar
  11. 11.
    Bett AJ, Haddara W, Prevec L, Graham FL (1994) An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci USA 91:8802–8806PubMedCrossRefGoogle Scholar
  12. 12.
    Bett AJ, Prevec L, Graham FL (1993) Packaging capacity and stability of human adenovirus type 5 vectors. J Virol 67:5911–5921PubMedGoogle Scholar
  13. 13.
    Brillantes AM, Allen P, Takahashi T, Izumo S, Marks AR (1992) Differences in cardiac calcium release channel (ryanodine receptor) expression in myocardium from patients with end-stage heart failure caused by ischemic versus dilated cardiomyopathy [published erratum appears in Circ Res (1992) 71(6):1538]. Circ Res 71:18–26PubMedCrossRefGoogle Scholar
  14. 14.
    Choukroun G, Hajjar R, Frye S, Del Monte F, Guerrero JL, Picard M, Rosenzweig A, Force T (1999) Regulation of cardiac hypertrophy in vivo by the stress-activated protein kinases/c-jun NH2 terminal kinases. J Clin Invest 104:391–398PubMedCrossRefGoogle Scholar
  15. 15.
    Choukroun G, Hajjar R, Kyriakis JM, Bonventre JV, Rosenzweig A, Force T (1998) Role of the stress-activated protein kinases in endothelin-induced cardiomyocyte hypertrophy. J Clin Invest 102:1311–1320PubMedCrossRefGoogle Scholar
  16. 16.
    Chu G, Luo W, Slack JP, Tilgmann C, Sweet WE, Spindler M, Saupe KW, Boivin GP, Moravec CS, Matlib MA, Grupp IL, Ingwall JS, Kranias EG (1996) Compensatory mechanisms associated with the hyperdynamic function of phospholambandeficient mouse hearts. Circ Res 79:1064–1076PubMedCrossRefGoogle Scholar
  17. 17.
    Davia K, Davies CH, Harding SE (1997) Effects of inhibition of sarcoplasmic reticulum calcium uptake on contraction in myocytes isolated from failing human ventricle. Cardiovasc Res 33:88–97PubMedCrossRefGoogle Scholar
  18. 18.
    Flesch M, Putz F, Schwinger RH, Bohm M (1996) Functional relevance of an enhanced expression of the Na(+)-Ca2+ exchanger in the failing human heart. Ann NY Acad Sci 779:539–542PubMedCrossRefGoogle Scholar
  19. 19.
    Flesch M, Schwinger RH, Schiffer F, Frank K, Sudkamp M, Kuhn-Regnier F, Arnold G, Bohm M (1996) Evidence for functional relevance of an enhanced expression of the Na(+)-Ca2+ exchanger in failing human myocardium. Circulation 94:992–1002PubMedCrossRefGoogle Scholar
  20. 20.
    French BA, Mazur W, Geske RS, Bolli R (1994) Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation 90:2414–2424PubMedCrossRefGoogle Scholar
  21. 21.
    Giordano FJ, He H, McDonough P, Meyer M, Sayen MR, Dillmann WH (1997) Adenovirus-mediated gene transfer reconstitutes depressed sarcoplasmic reticulum Ca2+-ATPase levels and shortens prolonged cardiac myocyte Ca2+ transients. Circulation 96:400–403PubMedCrossRefGoogle Scholar
  22. 22.
    Gomez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF, Cannell MB, McCune SA, Altschuld RA, Lederer WJ (1997) Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure [see comments]. Science 276:800–806PubMedCrossRefGoogle Scholar
  23. 23.
    Graham FL, Prevec L (1995) Methods for construction of adenovirus vectors. Mole Biotech 3:207–220CrossRefGoogle Scholar
  24. 24.
    Guzman RJ, Lemarchand P, Crystal RG, Epstein SE, Finkel T (1993) Efficient gene transfer into myocardium by direct injection of adenovirus vectors. Circ Res 73:1202–1207PubMedCrossRefGoogle Scholar
  25. 25.
    Gwathmey JK, Bentivegna LA, Ransil BJ, Grossman W, Morgan JP (1993) Relationship of abnormal intracellular calcium mobilisation to myocyte hypertrophy in human ventricular myocardium. Cardiovasc Res 27:199–203PubMedCrossRefGoogle Scholar
  26. 26.
    Gwathmey JK, Copelas L, MacKinnon R, Schoen FJ, Feldman MD, Grossman W, Morgan JP (1987) Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res 61:70–76PubMedCrossRefGoogle Scholar
  27. 27.
    Gwathmey JK, Davidoff AJ (1994) Pathophysiology of cardiomyopathies: Part II. Drug-induced and other interventions [review] [46 refs]. Curr Opin Cardiol 9:369–378PubMedCrossRefGoogle Scholar
  28. 28.
    Gwathmey JK, Hajjar RJ (1990) Relation between steady-state force and intracellular [Ca2+] in intact human myocardium. Index of myofibrillar responsiveness to Ca2+. Circulation 82:1266–1278PubMedCrossRefGoogle Scholar
  29. 29.
    Gwathmey JK, Liao R, Helm PA, Thaiyananthan G, Hajjar RJ (1995) Is contractility depressed in the failing human heart? [Review] [40 refs]. Cardiovasc Drugs Ther 9:581–587PubMedCrossRefGoogle Scholar
  30. 30.
    Gwathmey JK, Morgan JP (1985) Altered calcium handling in experimental pressure-overload hypertrophy in the ferret. Circ Res 57:836–843PubMedCrossRefGoogle Scholar
  31. 31.
    Gwathmey JK, Morgan JP (1993) Sarcoplasmic reticulum calcium mobilization in right ventricular pressure-overload hypertrophy in the ferret: relationships to diastolic dysfunction and a negative treppe. Pflugers Arch 422:599–608PubMedCrossRefGoogle Scholar
  32. 32.
    Gwathmey JK, Slawsky MT, Hajjar RJ, Briggs GM, Morgan JP (1990) Role of intracellular calcium handling in force-interval relationships of human ventricular myocardium. J Clin Invest 85:1599–1613PubMedCrossRefGoogle Scholar
  33. 33.
    Hajjar RJ, DiSalvo TG, Schmidt U, Thaiyananthan G, Semigran MJ, Dec GW, Gwathmey JK (1997) Clinical correlates of the myocardial force-frequency relationship in patients with end-stage heart failure. J Heart Lung Transplant 16:1157–1167PubMedGoogle Scholar
  34. 34.
    Hajjar RJ, Kang JX, Gwathmey JK, Rosenzweig A (1997) Physiological effects of adenoviral gene transfer of sarcoplasmic reticulum calcium ATPase in isolated rat myocytes. Circulation 95:423–429PubMedCrossRefGoogle Scholar
  35. 35.
    Harding SE, Jones SM, O’Gara P, del Monte F, Vescovo G, Poole-Wilson PA (1992) Isolated ventricular myocytes from failing and non-failing human heart; the relation of age and clinical status of patients to isoproterenol response. J Mol Cell Cardiol 24:549–564PubMedCrossRefGoogle Scholar
  36. 36.
    Hajjar RJ, Schmidt U, Kang IX, Matsui T, Rosenzweig A (1997) Adenoviral gene transfer of phospholamban in isolated rat cardiomyocytes. Rescue effects by concomitant gene transfer of sarcoplasmic reticulum Ca2+ ATPase. Circ Res 81:145–153PubMedCrossRefGoogle Scholar
  37. 37.
    Hajjar RJ, Schmidt U, Matsui T, Guerrero JL, Lee KH, Gwathmey JK, Dec GW, Semigran MJ, Rosenzweig A (1998) Modulation of ventricular function through gene transfer in vivo. Proc Nat11 Acad Sci USA 95:5251–5256CrossRefGoogle Scholar
  38. 38.
    Hasenfuss G (1998) Calcium pump overexpression and myocardial function. Implications for gene therapy of myocardial failure [editorial; comment]. Circ Res 83:966–968PubMedCrossRefGoogle Scholar
  39. 39.
    Hasenfuss G, Holubarsch C, Hermann HP, Astheimer K, Pieske B, Just H (1994) Influence of the force-frequency relationship on haemodynamics and left ventricular function in patients with non-failing hearts and in patients with dilated cardiomyopathy. Eur Heart J 15:164–170PubMedCrossRefGoogle Scholar
  40. 40.
    Harding SE, MacLeod KT, Jones SM, Vescovo G, Poole-Wilson PA (1991) Contractile responses of myocytes isolated from patients with cardiomyopathy. Eur Heart J 12(Suppl D):44–48PubMedCrossRefGoogle Scholar
  41. 41.
    Hasenfuss G, Pieske B, Holubarsch C, Alpert NR, Just H (1993) Excitation-contraction coupling and contractile protein function in failing and nonfailing human myocardium. Adv Exp Med Biol 346:91–100PubMedCrossRefGoogle Scholar
  42. 42.
    Hasenfuss G, Reinecke H, Studer R, Pieske B, Meyer M, Drexler H, Just H (1996) Calcium cycling proteins and force-frequency relationship in heart failure. Basic Res Cardiol 91(Suppl 2):17–22PubMedCrossRefGoogle Scholar
  43. 43.
    Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J, Holubarsch C, Posival H, Just H, Drexler H (1994) Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circ Res 75:434–442PubMedCrossRefGoogle Scholar
  44. 44.
    Hasenfuss G, Schillinger W, Lehnart SE, Preuss M, Pieske B, Maier LS, Prestle J, Minami K, Just H (1999) Relationship between NatCa2+-exchanger protein levels and diastolic function of failing human myocardium. Circulation 99:641–648PubMedCrossRefGoogle Scholar
  45. 45.
    He H, Giordano FJ, Hilal-Dandan R, Choi DJ, Rockman HA, McDonough PM, Bluhm WF, Meyer M, Sayen MR, Swanson E, Dillmann WH (1997) Overexpression of the rat sarcoplasmic reticulum Ca2+ ATPase gene in the heart of trans-genic mice accelerates calcium transients and cardiac relaxation. J Clin Invest 100:380–389PubMedCrossRefGoogle Scholar
  46. 46.
    Hitt MM, Addison CL, Graham FL (1997) Human adenovirus vectors for gene transfer into mammalian cells [Review] [445 refs]. Adv Pharmacol 40:137–206PubMedCrossRefGoogle Scholar
  47. 47.
    Koss KL, Kranias EG (1996) Phospholamban: a prominent regulator of myocardial contractility. Circ Res 79:1059–1063PubMedCrossRefGoogle Scholar
  48. 48.
    Krougliak V, Graham FL (1995) Development of cell lines capable of complementing El, E4, and protein IX defective adenovirus type 5 mutants. Hum Gene Ther 6:1575–1586PubMedCrossRefGoogle Scholar
  49. 49.
    Lamont C, Luther PW, Balke CW, Wier WG (1998) Intercellular Cat’ waves in rat heart muscle. J Physiol 512:669–676PubMedCrossRefGoogle Scholar
  50. 50.
    Lopez-Lopez JR, Shacklock PS, Balke CW, Wier WG (1994) Local, stochastic release of Ca2+in voltage-clamped rat heart cells: visualization with confocal microscopy. J Physiol 480:21–29PubMedGoogle Scholar
  51. 51.
    Lopez-Lopez JR, Shacklock PS, Balke CW, Wier WG (1995) Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science 268:1042–1045PubMedCrossRefGoogle Scholar
  52. 52.
    Mercadier JJ, Lompre AM, Duc P, Boheler KR, Fraysse JB, Wisnewsky C, Allen PD, Komajda M, Schwartz K (1990) Altered sarcoplasmic reticulum Ca2(+)-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest 85:305–309PubMedCrossRefGoogle Scholar
  53. 53.
    Meyer M, Bluhm WF, He H, Post SR, Giordano FJ, Lew WY, Dillmann WH (1999) Phospholamban-to-SERCA2 ratio controls the force-frequency relationship. Am J Physiol 276:H779–785PubMedGoogle Scholar
  54. 54.
    Meyer M, Schillinger W, Pieske B, Holubarsch C, Heilmann C, Posival H, Kuwajima G, Mikoshiba K, Just H, Hasenfuss G (1995) Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 92:778–784PubMedCrossRefGoogle Scholar
  55. 55.
    Miyamoto MI, Guerrero JL, Schmidt U, Gwathmey JK, Dec GW, Rosenzweig A, Hajjar RJ (1998) Adenoviral gene transfer of SERCA2a improves LV function in aortic-banded rats in transition to heart failure. Circulation 98:736Google Scholar
  56. 56.
    Schmidt U, Hajjar RJ, Helm PA, Kim CS, Doye AA, Gwathmey JK (1998) Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure. J Mol Cell Cardiol 30:1929–1937PubMedCrossRefGoogle Scholar
  57. 57.
    Schmidt U, Hajjar RI, Kim CS, Lebeche D, Doye AA, Gwathmey JK (1999) Human heart failure: cAMP stimulation of SR Ca2+-ATPase activity and phosphorylation level of phospholamban. Am J Physiol 277:H474–H480PubMedGoogle Scholar
  58. 58.
    Schwinger RH, Bohm M, Schmidt U, Karczewski P, Bavendiek U, Flesch M, Krause EG, Erdmann E (1995) Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca(2+)-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation 92:3220–3228PubMedCrossRefGoogle Scholar
  59. 59.
    Shacklock PS, Wier WG, Balke CW (1995) Local Ca2+ transients (Ca2+ sparks) originate at transverse tubules in rat heart cells. J Physiol 487:601–608PubMedGoogle Scholar
  60. 60.
    Shorofsky SR, Aggarwal R, Corretti M, Baffa JM, Strum JM, Al-Seikhan BA, Kobayashi YM, Jones LR, Wier WG, Balke CW (1999) Cellular mechanisms of altered contractility in the hypertrophied heart: big hearts, big sparks. Circ Res 84:424–434PubMedCrossRefGoogle Scholar
  61. 61.
    Shorofsky SR, Izu L, Wier WG, Balke CW (1998) Ca2+ sparks triggered by patch depolarization in rat heart cells. Circ Res 82:424–429PubMedCrossRefGoogle Scholar
  62. 62.
    Wier WG, Egan TM, Lopez-Lopez JR, Balke CW (1994) Local control of excitation-contraction coupling in rat heart cells. J Physiol 474:463–471PubMedGoogle Scholar
  63. 63.
    Wier WG, Lopez-Lopez JR, Shacklock PS, Balke CW (1995) Calcium signalling in cardiac muscle cells. Ciba Foundation Symposium 188:146–160; discussion 160–164Google Scholar
  64. 64.
    Wier WG, ter Keurs HE, Marban E, Gao WD, Balke CW (1997) Ca2+ ‘sparks’ and waves in intact ventricular muscle resolved by confocal imaging [see comments] [published erratum appears in Circ Res (1997) 81(5):893]. Circ Res 81:462–469Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • F. Del Monte
    • 1
  • S. E. Harding
    • 2
  • R. J. Hajjar
    • 1
  1. 1.Program in Cardiovascular Gene Therapy, Cardiovascular Research CenterMassachusetts General HospitalBostonUSA
  2. 2.Cardiac Medicine, National Heart Lung InstituteImperial College of MedicineLondonUK

Personalised recommendations