Advertisement

Neurohumoral modulation of metalloproteinases in cardiac failure: impact on remodeling

  • D. A. Kass
  • H. Senzaki
  • N. Paolocci

Abstract

A dominant hallmark of cardiac failure is progressive chamber dilation and structural remodeling. This process is thought to play a major contributory role to the later stages of chamber dysfunction and is linked to increased morbidity and mortality in various clinical studies [9, 16, 28]. The magnitude of dilation far exceeds anything achievable with acute loading stress, but rather involves structural rearrangement within the myocardial wall notably of the fibrillar collagen matrix surrounding myocytes and blood vessels. This process of collagen degradation and remodeling is principally mediated by matrix metalloproteinases (MMPs), a large family of enzymes synthesized by several myocardial cell types, and secreted and activated within the cardiac interstitium [3, 5, 38, 39, 41]. Recent studies have reported elevation of MMP expression in failing experimental and human heart failure [21, 36, 38]. Furthermore, inhibition of this enzyme system has been shown to limit progressive chamber dilation both in a rodent infarct model [26], and in cardiac failure induced by rapid ventricular pacing in the pig [35], supporting a role in chamber remodeling.

Keywords

Cardiac Failure Rapid Pace Chamber Dilation Diastolic Stiffening Cardiac Interstitium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Parks WC, Mecham RP (eds) (1998) Matrix Metalloproteinases. Academic Press, San DiegoGoogle Scholar
  2. 2.
    Armstrong PW, Moe GW, Howard ILI et al. (1994) Structural remodeling in heart failure: gelatinase induction. Can J Cardiol 10:214–220PubMedGoogle Scholar
  3. 3.
    Birkedal-Hansen H, Moore W, Bodden M, Windsor L, Birkedal-Hanse B, DeCarlo A, Engler J (1992) Matrix metalloproteinases: a review. Chir Rev Oral Biol Med 4:197–250Google Scholar
  4. 4.
    Coker ML, Doscher MA, Thomas CV, Galis ZS, Spinale FG (1999) Matrix metalloproteinase synthesis and expression in isolated LV myocyte preparations. Am J Physiol 277:H777–H787PubMedGoogle Scholar
  5. 5.
    Coker ML, Thomas CV, Clair MJ, Hendrick JW, Krombach RS, Galis ZS, Spinale FG (1998) Myocardial matrix metalloproteinase activity and abundance with congestive heart failure. Am J Physiol 274:H1516–H1523PubMedGoogle Scholar
  6. 6.
    Dostal DE, Baker KM (1999) The cardiac renin-angiotensin system. Conceptual, or a regulator of cardiac function. Circ Res 85:643–650PubMedCrossRefGoogle Scholar
  7. 7.
    Dostal DE, Hunt RA, Kule CE, Bhat GJ, Karoor V, McWhinney CD, Baker KM (1997) Molecular mechanisms of angiotensin II in modulating cardiac function: intracardiac effect sand signal transduction pathways. J Mol Cell Cardiol 29:2893–2902PubMedCrossRefGoogle Scholar
  8. 8.
    Goldstein S, Sabbah H (1994) Ventricular remodeling and angiotensin-converting enzyme inhibitors. J Cardiovasc Pharm 24 (Suppl 3):S27–S31CrossRefGoogle Scholar
  9. 9.
    Goldstein S, Sharov VG, Cook JM, Sabbah HN (1995) Ventricular remodeling: insights from pharmacologic interventions with angiotensin-converting enzyme inhibitors. Mol Cell Biochem 147:51–55PubMedCrossRefGoogle Scholar
  10. 10.
    Gross J, Lapiere CM (1962) Collagenolytic activity in amphibian tissues - A tissue culture assay. Proc Natl Acad Sci 48:1014–1022PubMedCrossRefGoogle Scholar
  11. 11.
    Harada K, Sugaya T, Murakami K, Yazaki Y, Komuro I (1999) Angiotensin II type 1 A receptor knockout mice display less left ventricular remodeling and improved survival after myocardial infarction. Circulation 100:2093–2099PubMedCrossRefGoogle Scholar
  12. 12.
    Henegar JR, Brower GL, Kabour A, Janicki JS (1995) Catecholamine response to chronic ANG II infusion and its role in myocyte and coronary vascular damage. Am J Physiol 269:H1564–H1569PubMedGoogle Scholar
  13. 13.
    Henegar JR, Schwartz DD, Janicki JS (1998) Ang II-related myocardial damage: role of cardiac sympathetic catecholamines and fi-receptor regulation. Am J Physiol 275:H534–H541PubMedGoogle Scholar
  14. 14.
    Itoh T, Tanioka M, Matsuda H, Nichimoto HYT, Suzuki R, Uehira M (1999) Experimental metastasis is suppressed in MMP-9-deficient mice. Clin Exp Metastasis 17:177–181PubMedCrossRefGoogle Scholar
  15. 15.
    Kleiner DE, Stetler-Stevenson WG (1994) Quantitative zymography: detection of picogram quantities of gelatinases. Anal Biochem 218:325–329PubMedCrossRefGoogle Scholar
  16. 16.
    Koilpillai C, Guinones MA, Greenberg B, Limacher MC, Shindler D, Pratt CM, Benedict CR, Kopelen H, Shelton B for the SOLVD Investigators (1996) Relation of ventricular size and function to heart failure status and ventricular dysrhythmia in patients with severe left ventricular dysfunction. Am J Cardiol 77:606–611PubMedCrossRefGoogle Scholar
  17. 17.
    Lee YA, Liang CS, Lee MA, Lindpaintner K (1996) Local stress, not systemic factors, regulate gene expression of the cardiac renin-angiotensin system in vivo: a comprehensive study of all its components in the dog. Proc Natl Acad Sci 93:11035–11040PubMedCrossRefGoogle Scholar
  18. 18.
    Leri A, Claudio PP, Li Q, Wang X, Reiss K, Wang S, Malhotra A, Kajstura J, An-versa P (1998) Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J Clin Invest 101:1326–1342PubMedCrossRefGoogle Scholar
  19. 19.
    Leri A, Dostal D, Liu Y, Wang X, Meggs LG, Anversa P (1998) Local renin-angiotensin system (RAS) is upregulated in myocytes following pacing-induced heart failure in dogs. Circulation 98:I 405 (abstr)Google Scholar
  20. 20.
    Lenarda A, Sabbadini G, Salvatore L, Sinagra G, Pinamonti B, Gregori D, Ciani F, Muzzi A, Klugmann S, Camerini F (1999) Long-term effects of carvedilol in idiopathic dilated cardiomyopathy with persistent left ventricular dysfunction despite chronic metoprolol. The Heart-Muscle Disease Study Group. J Am Coll Cardiol 33:1926–1934PubMedCrossRefGoogle Scholar
  21. 21.
    Li YY, Feldman AM, Sun Y, McTiernan CF (1998) Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation 98:1728–1734PubMedCrossRefGoogle Scholar
  22. 22.
    Luchner A, Stevens TL, Borgeson DD, Redfield MM, Bailey JE, Sandberg SM, Heublein DM, Burnett JC Jr (1996) Angiotensin II in the evolution of experimental heart failure. Hypertension 28:472–477PubMedCrossRefGoogle Scholar
  23. 23.
    Murphy G, Stanton H, Cowell S, Butler G, Knauper V, Atkinson S, Gavrilovic J (1999) Mechanisms for pro matrix metalloproteinase activation. APMIS 107:38–44PubMedCrossRefGoogle Scholar
  24. 24.
    Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494PubMedCrossRefGoogle Scholar
  25. 25.
    Pitt B, Segal R, Martinez FA, Meurers G, Cowley AJ, Thomas I, Deedwania PC, Ney DE, Snavely DB, Chang PI (1997) Randomized trial of losartan versus captopril in patients over 65 with heart failure. Lancet 349:747–752PubMedCrossRefGoogle Scholar
  26. 26.
    Rohde LE, Ducharme A, Arroyo LH, Aikawa M, Sukhova GH, Lopez-Anaya A, McClure KF, Mitchell PG, Libby P, Lee RT (1999) Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation 99:3063–3070PubMedCrossRefGoogle Scholar
  27. 27.
    Sadoshima J, Yuhui X, Slayter HS, Izumo S (1993) Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75:977–984PubMedCrossRefGoogle Scholar
  28. 28.
    St John Sutton M, Pfeffer MA, Moye L, Plappert T, Rouleau JL, Lamas G, Rouleau J, Parker JO, Arnold MO, Sussex B, Braunwald E (1997) Cardiovascular death and left ventricular remodeling two years after myocardial infarction: baseline predictors and impact of long-term use of captopril: information from the Survival and Ventricular Enlargement (SAVE) trial. Circulation 96:3294–3299PubMedCrossRefGoogle Scholar
  29. 29.
    Senzaki H, Gluzband YA, Pak PH, Crow MT, Janiki JS, Kass DA (1998) Synergistic exacerbation of diastolic stiffness from short-term tachycardial-induced cardiodepression and angiotensin II. Circ Res 82:503–512PubMedCrossRefGoogle Scholar
  30. 30.
    Senzaki H, Paolocci N, Gluzband YA, Lindsey ML, Janicki JS, Crow MT, Kass DA (2000) β -blockade prevents sustained metalloproteinase activation and diastolic stiffening induced by angiotensin II combined with evolving cardiac dysfunction. Circ Res 86:807–815PubMedCrossRefGoogle Scholar
  31. 31.
    Senzaki H, Paolocci N, Kass DA (1998) β -adrenergic blockade prevents angiotensin-mediated exacerbation of diastolic stiffness in conscious dogs with tachycardia-induced cardiodepression. Circulation 98:1–554 (abstr)CrossRefGoogle Scholar
  32. 32.
    Shapiro SD (1997) Mighty mice: transgenic technology “knocks out” questions of matrix metalloproteinase function. Matrix Biol 15:527–533PubMedCrossRefGoogle Scholar
  33. 33.
    Sodoshima J, Izumo S (1993) Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts: critical role of the AT1 receptor subtype. Circ Res 73:413–423CrossRefGoogle Scholar
  34. 34.
    SOLVD Investigators (1991) Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 325:293–302CrossRefGoogle Scholar
  35. 35.
    Spinale FG, Coker ML, Krombach SR, Mukherjee R, Hallak H, Houck WV, Clair MJ, Kribbs SB, Johnson LL, Peterson JT, Zile MR (1999) Matrix metalloproteinase inhibition during the development of congestive heart failure. Circ Res 85:364–376PubMedCrossRefGoogle Scholar
  36. 36.
    Spinale FG, Coker ML, Thomas CV, Walker JD, Mukherjee R, Hebbar L (1998) Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure. Circ Res 82:482–495PubMedCrossRefGoogle Scholar
  37. 37.
    Tan LB, Jalil JS, Janicki JE, Weber KT (1991) Cardiac myocyte necrosis induced by angiotensin II. Circ Res 69:1185–1195PubMedCrossRefGoogle Scholar
  38. 38.
    Thomas CV, Coker ML, Zellner JL, Handy JR, Crumbley AJ 3rd, Spinale FG (1998) Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation 97:1708–1715PubMedCrossRefGoogle Scholar
  39. 39.
    Weber KT, Anversa P, Armstrong PW, Brilla CG, Burnett JC Jr, Cruickshank JM, Devereux RB, Giles TD, Kordgaard N, Leier CV, Mendelsohn FAO, Motz WH, Mulvany MJ, Stuer BE (1992) Remodeling and reparation of the cardiovascular system. J Am Coll Cardiol 20:3–16PubMedCrossRefGoogle Scholar
  40. 40.
    Weber KT, Brilla CG (1991) Pathological hypertrophy and cardiac interstitium: fibrosis and renin-angiotensin-aldosterone system. Circulation 83:1849–1865PubMedCrossRefGoogle Scholar
  41. 41.
    Woessner J (1991) Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 5:2145–2154PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • D. A. Kass
    • 1
  • H. Senzaki
    • 1
  • N. Paolocci
    • 1
  1. 1.Division of Cardiology, Department of Medicine and Department of Biomedical EngineeringThe Johns Hopkins Medical InstitutionsBaltimoreUSA

Personalised recommendations