Cellular mechanisms of cardiac arrhythmias — do they play a role in heart failure?

  • D. J. Beuckelmann
  • L. Priebe
  • U. C. Hoppe


Patients with severe heart failure are at high risk to die suddenly. In the majority of these patients, sudden death is thought to be due to ventricular tachyarrhythmias. The mechanisms underlying these lethal arrhythmias are largely unknown. However, in animal models of heart failure and in humans, there is evidence that reentry as well as non-reentrant mechanisms may play a role (Table 1).


Heart Failure Sarcoplasmic Reticulum Ventricular Myocytes Action Potential Duration Action Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aronson RS (1981) Afterdepolarizations and triggered activity in hypertrophied myocardium from rats with renal hypertension. Circ Res 48:720–727PubMedCrossRefGoogle Scholar
  2. 2.
    Benitah JP, Bailly P, D’Agrosa MC, Da P, Delgado C, Lorente P (1992) Slow inward current in single myocytes isolated from adult human ventricles. Pflugers Arch 421:176–187PubMedCrossRefGoogle Scholar
  3. 3.
    Berger F, Borchard U, Hafner D, Kammer T, Weis T (1995) Modulation of action potential duration by inhibition of the transient outward current in sheep cardiac Purkinje fibers. Basis Res Cardiol 90:185–191CrossRefGoogle Scholar
  4. 4.
    Beuckelmann DJ, Näbauer M, Erdmann E (1993) Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res 73:379–385PubMedCrossRefGoogle Scholar
  5. 5.
    Beuckelmann DJ, Näbauer M, Erdmann E (1991) Characteristics of calcium-current in isolated human ventricular myocytes from patients with terminal heart failure. J Mol Cell Cardiol 23:929–937PubMedCrossRefGoogle Scholar
  6. 6.
    Beuckelmann DJ, Näbauer M, Erdmann E (1992) Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 85:1046–1055PubMedCrossRefGoogle Scholar
  7. 7.
    Beuckelmann DJ, Näbauer M, Krüger C, Erdmann E (1995) Altered diastolic [Ca2+], handling in human ventricular myocytes from patients with terminal heart failure. Am Heart J 129:684–689PubMedCrossRefGoogle Scholar
  8. 8.
    Cannell MB, Lederer WI (1986) The arrhythmogenic current Iti in the absence of electrogenic sodium-calcium exchange in sheep cardiac Purkinje fibres. J Physiol (Lond) 374:201–219Google Scholar
  9. 9.
    Carlsson L, Abrahamsson C, Almgren O, Lundberg C, Duker G (1991) Prolonged action potential duration and positive inotropy induced by the novel class III antiarrhythmic agent H 234/09 (almokalant) in isolated human ventricular muscle. J Cardiovasc Pharmacol 18:882–887PubMedCrossRefGoogle Scholar
  10. 10.
    Cerbai E, Barbieri M, Li Q, Mugelli A (1994) Ionic basis of action potential prolongation of hypertrophied cardiac myocytes isolated from hypertensive rats of different ages. Cardiovasc Res 28:1180–1187PubMedCrossRefGoogle Scholar
  11. 11.
    Cerbai E, Pino R, Porciatti F, Sani G, Toscano M, Maccherini M, Giunti G (1997) Characterization of the hyperpolarization-activated current, I(f), in ventricular myocytes from human failing heart. Circulation 95:568–571PubMedCrossRefGoogle Scholar
  12. 12.
    Cohen NM, Lederer WJ (1993) Calcium current in single human cardiac myocytes. J Cardiovasc Electrophysiol 4:422–437PubMedCrossRefGoogle Scholar
  13. 13.
    De Leon M, Wang Y, Jones L, Perez-Reyes E, Wei X, Wah Soong T, Snutch TP, Yue DT (1995) Essential Ca2+-binding motif for Ca2+-sensitive inactivation of L-type Ca2+ channels. Science 270:1502–1505PubMedCrossRefGoogle Scholar
  14. 14.
    DiFrancesco D (1991) The contribution of the ‘pacemaker’ current (If) to generation of spontaneous activity in rabbit sino-atrial node myocytes. J Physiol Lond 434:23–40PubMedGoogle Scholar
  15. 15.
    Ehara T, Noma A, Ono K (1988) Calcium-activated non-selective cation channels in ventricular cells isolated from adult guinea-pig hearts. J Physiol (Lond) 403:117–133Google Scholar
  16. 16.
    Fedida D, Noble D, Rankin AC, Spindler AJ (1987) The arrhythmogenic transient inward current Iti and related contraction in isolated guinea-pig ventricular myocytes. J Physiol (Lond) 392:523–542Google Scholar
  17. 17.
    Flesch M, Schwinger RHG, Schiffer F, Frank K, Südkamp M, Kuhn-Regnier F, Arnold G, Bohm M (1996) Evidence for functional relevance of an enhanced expression of the Na+-Ca2+ exchanger in failing human myocardium. Circulation 94:992–1002PubMedCrossRefGoogle Scholar
  18. 18.
    Giles W, Shimoni Y (1989) Comparison of sodium-calcium exchanger and transient inward currents in single cells from rabbit ventricle. J Physiol (Lond) 417:465–481Google Scholar
  19. 19.
    Ginneken ACG, Giles W (1991) Voltage clamp measurements of the hyperpolarization-activated inward current If in single cells from rabbit sino-atrial node. J Physiol 434:57–83PubMedGoogle Scholar
  20. 20.
    Gwathmey JK, Copelas L, MacKinnon R, Schoen FJ, Feldman MD, Grossman W, Morgan JP (1987) Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res 61:70–76PubMedCrossRefGoogle Scholar
  21. 21.
    Gwathmey JK, Hajjar RJ (1990) Relation between steady-state force and intracellular [Ca2+]i in intact human myocardium. Index of myofibrillar responsiveness to Ca2+. Circulation 82:1266–1278PubMedCrossRefGoogle Scholar
  22. 22.
    Hart G (1994) Cellular electrophysiology in cardiac hypertrophy and failure. Cardiovasc Res 28:933–946PubMedCrossRefGoogle Scholar
  23. 23.
    Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J, Holubarsch C, Posival H, Just H, Drexler H (1994) Relation between myocardial function and expression of sarcoplasmic reticulum Ca2+-ATPase in failing and nonfailing human myocardium. Circ Res 75:434–442PubMedCrossRefGoogle Scholar
  24. 24.
    Hayward RP, Taggart P (1986) Effect of sotalol on human atrial action potential duration and refractoriness: cycle length dependency of class III activity. Cardiovasc Res 20:100–107PubMedCrossRefGoogle Scholar
  25. 25.
    Hilgemann DW, Noble D (1987) Excitation-contraction coupling and extracellular calcium transients in rabbit atrium: reconstruction of basic cellular mechanism. Proc R Soc Lond 230:163–205PubMedCrossRefGoogle Scholar
  26. 26.
    Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544PubMedGoogle Scholar
  27. 27.
    Hoppe UC, Beuckelmann DJ (1998) Characterization of the hyperpolarization-activated inward current in isolated human atrial myocytes. Cardiovasc Res 38:788–801PubMedCrossRefGoogle Scholar
  28. 28.
    Hoppe UC, Jansen E, Sudkamp M, Beuckelmann DJ (1998) Hyperpolarization-activated inward current in ventricular myocytes from normal and failing human hearts. Circulation 97:55–65PubMedCrossRefGoogle Scholar
  29. 29.
    Huikuri HV, Yli-Mayry S (1992) Frequency dependent effects of d-sotalol and amiodarone on the action potential duration of the human right ventricle. PACE 15:2103–2107PubMedCrossRefGoogle Scholar
  30. 30.
    Käab S, Nuss HB, Chiamvimonvat N, O’Rourke B, Pak PH, Kass DA, Marban E, Tomaselli GF (1996) Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ Res 78:262–273PubMedCrossRefGoogle Scholar
  31. 31.
    Köster O, Szigeti GP, Beuckelmann DJ (1999) Characterisation of a [Ca2+]i,-dependent current in human atrial and ventricular myocytes in the absence of Na+ and K+. Cardiovasc Res 41:175–187PubMedCrossRefGoogle Scholar
  32. 32.
    Koumi S, Backer CL, Arentzen CE (1995) Characterization of inwardly rectifying K+ channel in human cardiac myocytes. Alterations in channel behavior in myocytes isolated from patients with idiopathic dilated cardiomyopathy. Circulation 92:164–174PubMedCrossRefGoogle Scholar
  33. 33.
    Li GR, Feng J, Yue L, Carrier M, Nattel S (1996) Evidence for two components of delayed rectifier K+ current in human ventricular myocytes. Circ Res 78:689–696PubMedCrossRefGoogle Scholar
  34. 34.
    Luo CH, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 74:1071–1096PubMedCrossRefGoogle Scholar
  35. 35.
    Luo CH, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation. Circ Res 74:1097–1113PubMedCrossRefGoogle Scholar
  36. 36.
    Luo CH, Rudy Y (1991) A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ Res 68:1501–1526PubMedCrossRefGoogle Scholar
  37. 37.
    Mewes T, Ravens U (1994) L-type calcium currents of human myocytes from ventricle of non-failing and failing hearts and from atrium. J Mol Cell Cardiol 26:1307–1320PubMedCrossRefGoogle Scholar
  38. 38.
    Meyer M, Schillinger W, Pieske B, Holubarsch C, Heilmann C, Posival H, Kuwajima G, Mikoshiba K, Just H, Hasenfuss G (1995) Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 92:778–784PubMedCrossRefGoogle Scholar
  39. 39.
    Morgan JM, Cunningham D, Rowland E (1992) Electrical restitution in the endocardium of the intact human right ventricle. Br Heart J 67:42–46PubMedCrossRefGoogle Scholar
  40. 40.
    Nabauer M, Beuckelmann DJ, Erdmann E (1993) Characteristics of transient outward current in human ventricular myocytes from patients with terminal heart failure. Circ Res 73:386–394PubMedCrossRefGoogle Scholar
  41. 41.
    Nabauer M, Beuckelmann DJ, Uberfuhr P, Steinbeck G (1996) Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation 93:168–177PubMedCrossRefGoogle Scholar
  42. 42.
    Navarro-Polanco RA, Sanchez-Chapula JA (1997) 4-Aminopyridine activates potassium currents by activation of a muscarinic receptor in feline atrial myocytes. J Physiol 498.3:663–678Google Scholar
  43. 43.
    Nordin C, Gilat E, Aronson RS (1985) Delayed afterdepolarizations and triggered activity in ventricular muscle from rats with streptozotocin-induced diabetes. Circ Res 57:28–34PubMedCrossRefGoogle Scholar
  44. 44.
    Nordin C, Ming Z (1995) Computer model of current-induced early afterdepolarizations in guinea pig ventricular myocytes. Am J Physiol 268:H2440–2459PubMedGoogle Scholar
  45. 45.
    Ouadid H, Albat B, Nargeot J (1995) Calcium currents in diseased human cardiac myocytes. J Cardiovasc Pharmacol 25:282–291PubMedCrossRefGoogle Scholar
  46. 46.
    Peeters GA, Sanguinetti MC, Eki Y, Konarzewska H, Renlund DG, Karwande SV, Barry WH (1995) Method for isolation of human ventricular myocytes from single endocardial and epicardial biopsies. Am J Physiol 268:H1757–1764PubMedGoogle Scholar
  47. 47.
    Priebe L, Beuckelmann DJ (1998) Simulation study of cellular electric properties in heart failure. Circ Res 82:1206–1223PubMedCrossRefGoogle Scholar
  48. 48.
    Reinecke H, Studer R, Vetter R, Holtz J, Drexler H (1996) Cardiac Na+/Ca2+ exchange activity in patients with end-stage heart failure. Cardiovasc Res 31:48–54PubMedGoogle Scholar
  49. 49.
    Sanguinetti MC, Jurkiewicz NK (1990) Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 96:195–215PubMedCrossRefGoogle Scholar
  50. 50.
    Sanguinetti MC, Jurkiewicz NK (1992) Role of external Ca2+ and K+ in gating of cardiac delayed rectifier K+ currents. Pflugers Arch 420:180–186PubMedCrossRefGoogle Scholar
  51. 51.
    Schumacher C, Konigs B, Sigmund M, Kohne B, Schondube F, Vob M, Stein B, Weil J, Hanrath P (1995) The ryanodine binding sarcoplasmic reticulum calcium release channel in nonfailing and in failing human myocardium. Naunyn Schmiedebergs Arch Pharmacol 353:80–85PubMedCrossRefGoogle Scholar
  52. 52.
    Schwinger RH, Bohm M, Schmidt U, Karczewski P, Bavendiek U, Flesch M, Krause EG, Erdmann E (1995) Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca2+-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation 92:3220–3228PubMedCrossRefGoogle Scholar
  53. 53.
    Sham JSK, Hatem SN, Morad M (1995) Species differences in the activity of the Na+-Ca2+ exchanger in mammalian cardiac myocytes. J Physiol 488.3:623–631Google Scholar
  54. 54.
    Shamraj OI, Grupp IL, Grupp G, Melvin D, Gradoux N, Kremers W, Lingrel JB, De Pover A (1993) Characterisation of Na/K-ATPase, its isoforms, and the inotropic response to ouabain in isolated failing human hearts. Cardiovasc Res. 27:2229–2237PubMedCrossRefGoogle Scholar
  55. 55.
    Sipido KR, Callewaert G, Carmeliet E (1995) Inhibition and rapid recovery of Ca2+ current during Ca2+ release from sarcoplasmic reticulum in guinea pig ventricular myocytes. Circ Res 76:102–109PubMedCrossRefGoogle Scholar
  56. 56.
    Splawski I, Tristani-Firouzi M, Lehmann MH, Sanguinetti MC, Keating MT (1997) Mutations in the hmink gene cause long QT syndrome and suppress Iks function. Nature Genet 17:338–340PubMedCrossRefGoogle Scholar
  57. 57.
    Vermeulen JT, McGuire MA, Opthof T, Coronel R, de Bakker JMT, Klopping C, Janse MJ (1994) Triggered activity and automaticity in ventricular trabeculae of failing human and rabbit hearts. Cardiovasc Res 28:1547–1554PubMedCrossRefGoogle Scholar
  58. 58.
    Wettwer E, Amos G, Gath J, Zerkowski HR, Reidemeister JC, Ravens U (1993) Transient outward current in human and rat ventricular myocytes. Cardiovasc Res 27:1662–1669PubMedCrossRefGoogle Scholar
  59. 59.
    Wettwer E, Grundke M, Ravens U (1992) Differential effects of the new class III antiarrhythmic agents almokalant, E-4031 and D-sotalol, and of quinidine, on delayed rectifier currents in guinea pig ventricular myocytes. Cardiovasc Res 26:1145–1152PubMedCrossRefGoogle Scholar
  60. 60.
    Wiederhold KF, Nilius B (1986) Increased sensitivity of ventricular myocardium to intracellular calcium overload in Syrian cardiomyopathic hamster. Biomed Biochim Acta 45:1333–1337PubMedGoogle Scholar
  61. 61.
    Yue L, Feng J, Li GR, Nattel S (1996) Transient outward and delayed rectifier currents in canine atrium: properties and role of isolation methods. Am J Physiol 270:H2157–2168PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • D. J. Beuckelmann
    • 1
  • L. Priebe
    • 1
  • U. C. Hoppe
    • 1
  1. 1.Department of Medicine IIIUniversity of CologneGermany

Personalised recommendations