Skip to main content

Cardiac assistance from skeletal muscle achieving a viable and appropriately transformed graft

  • Conference paper
Surgical Remodeling in Heart Failure
  • 62 Accesses

Abstract

For some years the surgical treatment of end-stage cardiac failure has been restricted to cardiac transplantation. The discovery that adult mammalian skeletal muscle is capable of undergoing adaptive change, through which it can acquire a markedly increased resistance to fatigue, has revived interest in the possibility of diverting a skeletal muscle from its normal function to perform in a cardiac assist role. For procedures based on this approach to be successful, the skeletal muscle graft must remain viable and acquire a functional profile appropriate to the task. Recent work shows that we have a better chance of achieving these objectives if we re-examine both the working conditions and the way in which we prepare the skeletal muscle graft to meet them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acker MA, Hammond R, Mannion JD, Salmons S, Stephenson LW (1986) An autologous biologic pump motor. J Thorac Cardiovasc Surg 12:733–746

    Google Scholar 

  2. Acker MA, Hammond RL, Mannion JD, Salmons S, Stephenson LW (1987) Skeletal muscle as the potential power source for a cardiovascular pump: assessment in vivo. Science 236:324–327

    Article  PubMed  CAS  Google Scholar 

  3. Anderson DR, Pochettino A, Hammond RL, Hohenhaus E, Spanta AD, Bridges CR, Jr, Lavine S, Bhan RD, Colson M, Stephenson LW (1991) Autogenously lined skeletal muscle ventricles in circulation. Up to nine months’ experience. J Thorac Cardiovasc Surg 101:661–670

    PubMed  CAS  Google Scholar 

  4. Anderson WA, Andersen JS, Acker MA, Hammond RL, Chin AJ, Douglas PS, Khalafalla AS, Salmons S, Stephenson LW (1988) Skeletal muscle grafts applied to the heart: a word of caution. Circulation 78 (Suppl 1):180–190

    Google Scholar 

  5. Capouya ER, Gerber RS, Drinkwater DC, Jr, Pearl JM, Sack JB, Aharon AS, Barthel SW, Kaczer EM, Chang PA, Laks H (1993) Girdling effect of nonstimulated cardiomyoplasty on left ventricular function [see comments]. Ann Thorac Surg 56:867–870

    Article  PubMed  CAS  Google Scholar 

  6. Carraro U, Docali G, Barbiero M, Brunazzi C, Gealow K, Casarotto D, Muneretto C (1998) Demand dynamic cardiomyoplasty: improved clinical benefits by non-invasive monitoring of LD flap and long-term tuning of its dynamic contractile characteristics by activity-rest regime. Basic Appl Myol 8:11–15

    Google Scholar 

  7. Carroll SM, Carroll CMA, Stremel RW, Heilman SJ, Tobin GR, Barker JH (1997) Vascular delay of the latissimus dorsi muscle: an essential component of cardiomyoplasty. Ann Thorac Surg 63:1034–1040

    Article  PubMed  CAS  Google Scholar 

  8. Carroll SM, Heilman SJ, Stremel RW, Tobin GR, Barker JH (1997) Vascular delay improves latissimus dorsi muscle perfusion and muscle function for use in cardiomyoplasty. Plas Reconstr Surg 99:1329–1337

    Article  CAS  Google Scholar 

  9. Chekanov VS, Krakovsky AA, Bushlenko NS, Riabinina LG, Andreev DB, Shatalov KV, Dubrovsky IA, Pekarsky VV, Akhmedov SD, Trehan N, Shetty K (1994) Cardiomyoplasty. Review of early and late results. Vasc Surg 28:481–488

    Article  Google Scholar 

  10. Cheng W, Michele JJ, Spinale FG, Sink JD, Santamore WP (1993) Effects of cardiomyoplasty on biventricular function in canine chronic heart failure. Ann Thorac Surg 55:893–901

    Article  PubMed  CAS  Google Scholar 

  11. El Oakley RM, Jarvis JC (1994) Cardiomyoplasty: a critical review of experimental and clinical results. Circulation 90:2085–2090

    Article  PubMed  Google Scholar 

  12. El Oakley RM, Jarvis JC, Barman D, Greenhalgh DL, Currie J, Downham DY, Salmons S, Hooper TL (1995) Factors affecting the integrity of latissimus dorsi muscle grafts: implications for cardiac assistance from skeletal muscle. J Heart Lung Transpl 14:359–365

    Google Scholar 

  13. Fritzsche D, Krakor R, Asmussen G, Lange S, Kaufmann A, Zapf P, Melhorn G, Berkei J, Widera R (1994) Effect of an anabolic steroid (Metenolon) on contractile performance of the chronically stimulated latissimus dorsi in sheep. Eur J Cardiothorac Surg 8:214–219

    Article  PubMed  CAS  Google Scholar 

  14. Furnary AP, Chachques JC, Moreira LFP, Grunkemeier GL, Swanson JS, Stolf N, Haydar S, Acar C, Starr A, Jatene AD, Carpentier AF (1996) Long-term outcome, survival analysis, and risk stratification of dynamic cardiomyoplasty. J Thorac Cardiovasc Surg 112:1640–1649

    Article  PubMed  CAS  Google Scholar 

  15. Grandjean PA, Lori Austin RN, Chan S, Terpestra B, Bourgeois IM (1991) Dynamic cardiomyoplasty: clinical follow-up results. J Cardiac Surg 6:80–88

    CAS  Google Scholar 

  16. Ianuzzo CD, Ianuzzo SE, Carson N, Feild M, Locke M, Gu J, Anderson WA, Klabunde RE (1996) Cardiomyoplasty: degeneration of the assisting skeletal muscle. J Appl Physiol 80:1205–1213

    PubMed  CAS  Google Scholar 

  17. Jarvis JC, Brownson C, Sutherland H, Salmons S (1992) Comparison between the effects of continuous long-term stimulation of rabbit skeletal muscle at 2.5 Hz and 10 Hz. In: Carraro U (ed) Muscle Driven Devices for Cardiac Assistance. Commission of the European Communities, Brussels, pp 29–34

    Google Scholar 

  18. Jarvis JC, Sutherland H, Mayne CN, Gilroy SJ, Salmons S (1996) Induction of a fast-oxidative phenotype by chronic muscle stimulation: mechanical and biochemical studies. Am J Physiol 270:C306–312

    PubMed  CAS  Google Scholar 

  19. Kalil-Filho R, Bocchi E, Weiss RG, Rosemberg L, Bacal F, Moreira LFP, Stolf NAG, Magalháes AAC, Belotti G, Jatene A, Pileggi F (1994) Magnetic resonance imaging evaluation of chronic changes in latissimus dorsi cardiomyoplasty. Circulation 90:11102–11106

    Google Scholar 

  20. Kantrowitz A, McKinnon W (1959) The experimental use of the diaphragm as an auxiliary myocardium. Surgical Forum 9:266–268

    Google Scholar 

  21. Kass DA, Baughman KL, Pak PH, Cho PW, Levin HR, Gardner TJ, Halperin HR, Tsitlik JE, Acker MA (1995) Reverse remodeling from cardiomyoplasty in human heart failure. External constraint versus active assist. Circulation 91:2314–2318

    Article  PubMed  CAS  Google Scholar 

  22. Kwende MMN, Jarvis JC, Salmons S (1995) The input-output relationships of skeletal muscle. Proc Roy Soc Lond Ser B 261:193–201

    Article  CAS  Google Scholar 

  23. Le Tissier P, Stoye JP, Takeuchi Y, Patience C, Weiss RA (1997) Two sets of human-tropic pig retrovirus. Nature 389:681–682

    Article  PubMed  Google Scholar 

  24. Lucas CMHB, van der Veen FH, Cheriex EC, Lorusso R, Havenith M, Penn OCKM, Wellens HJJ (1993) Long-term follow-up (12 to 35 weeks) after dynamic cardiomyoplasty. J Amer Coll Cardiol 22:758–767

    Article  CAS  Google Scholar 

  25. Mannion JD, Blood V, Bailey W, Bauer TL, Magno MG, DiMeo F, Epple A, Spinale FG (1996) The effect of basic fibroblast growth factor on the blood flow and morphologic features of a latissimus dorsi cardiomyoplasty. J Thorac Cardiovasc Surg 111:19–28

    Article  PubMed  CAS  Google Scholar 

  26. Mannion JD, Hammond RL, Stephenson LW (1986) Canine latissimus dorsi hydraulic pouches: potential for left ventricular assistance. J Thorac Cardiovasc Surg 91:534–544

    PubMed  CAS  Google Scholar 

  27. Mannion JD, Velchik M, Hammond R, Alavi A, Mackler T, Duckett S, Staum M, Hurwitz S, Brown W, Stephenson LW (1989) Effects of collateral blood vessel ligation and electrical conditioning on blood flow in dog latissimus dorsi muscle. J Surg Res 47:332–340

    Article  PubMed  CAS  Google Scholar 

  28. Mayne CN, Sutherland H, Jarvis JC, Gilroy SJ, Craven AJ, Salmons S (1996) Induction of a fast-oxidative phenotype by chronic muscle stimulation: histochemical and metabolic studies. Am J Physiol 270:C313–320

    PubMed  CAS  Google Scholar 

  29. McCarthy PM (1996) Ventricular remodelling: hype or hope? Nature Medicine 2:859–860

    Article  PubMed  CAS  Google Scholar 

  30. Moreira LFP, Bocchi EA, Stolf NAG, Bellotti G, Jatene AD (1996) Dynamic cardiomyoplasty in the treatment of dilated cardiomyopathy - current results and perspectives. J Cardiac Surg 11:207–216

    Article  CAS  Google Scholar 

  31. Moreira LFP, Bocchi EA, Stolf NAG, Pileggi F, Jatene AD (1993) Current expectations in dynamic cardiomyoplasty. Ann Thorac Surg 55:299–303

    Article  PubMed  CAS  Google Scholar 

  32. Oh JH, Badhwar V, Chiu RC-J (1996) Mechanisms of dynamic cardiomyoplasty J current concepts. J Cardiac Surg 11:194–199

    Article  CAS  Google Scholar 

  33. Petrou M, Wynne D, Boheler K, Yacoub M (1995) Clenbuterol induces hypertrophy of the latissimus dorsi muscle and heart in the rat with molecular and phenotypic changes. Circulation 92:483-I489

    Article  CAS  Google Scholar 

  34. Pochettino A, Anderson DR, Hammond RL, Salmons S, Stephenson LW (1991) Skeletal muscle ventricles. Sem Thorac Cardiovasc Surg 3:154–159

    CAS  Google Scholar 

  35. Radermecker MA, Triffaux M, Fissette J, Limet R (1992) Anatomical rationale for use of the latissimus dorsi flap during the cardiomyoplasty operation. Surg Radiol Anat 14:5–10

    Article  PubMed  CAS  Google Scholar 

  36. Salmons PH, Salmons S (1992) Psychological costs of high-tech heart surgery (guest editorial). Br J Hosp Med 48:707–709

    PubMed  CAS  Google Scholar 

  37. Salmons S (1975) On the feasibility of using diaphragm muscle as a myocardial substitute. Med Biol Eng 13:608–609

    Google Scholar 

  38. Salmons S (1992) Optimizing the benefits of cardiomyoplasty. Br J Hosp Med 49:137

    Google Scholar 

  39. Salmons S (1994) Exercise, stimulation and type transformation of skeletal muscle. Int J Sports Med 15:136–141

    Article  PubMed  CAS  Google Scholar 

  40. Salmons S (1997) Damage in functional grafts of skeletal muscle. In: Muscle Damage. Salmons S (ed) Oxford University Press, Oxford, pp 215–233

    Google Scholar 

  41. Salmons S, Henriksson J (1981) The adaptive response of skeletal muscle to increased use. Muscle Nerve 4:94–105

    Article  PubMed  CAS  Google Scholar 

  42. Salmons S, Jarvis JC (1990) Cardiomyoplasty: the basic issues. Cardiac Chronicle 4:1–7

    Google Scholar 

  43. Salmons S, Jarvis JC (1991) Cardiomyoplasty: a look at the fundamentals. In: Carpentier A, Chachques JC, Grandjean PA (eds) Cardiomyoplasty. Futura Publishing Company, Inc., Mount Kisco, NY, pp 3–17

    Google Scholar 

  44. Salmons S, Jarvis JC (1992) Cardiac assistance from skeletal muscle: a critical appraisal of the various approaches. Br Heart J 68:333–338

    Article  PubMed  CAS  Google Scholar 

  45. Salmons S, Jarvis JC (1993) Measuring, estimating and preserving skeletal muscle power for cardiac assistance. In: Proceedings of the 4th Vienna International Workshop on Functional Electrostimulation: Basics, Technology, Clinical Application. Vienna, ISBN 3–900928–02–9, pp 26–29

    Google Scholar 

  46. Salmons S, Jarvis JC (1995) Educating skeletal muscle to do cardiac work. In: Lewis T, Graham TR, Frazier OH, Hill JD, Pennington DG, Salmons S (eds) Mechanical Circulatory Support. Edward Arnold, London, pp 259–266

    Google Scholar 

  47. Salmons S, Sréter FA (1976) Significance of impulse activity in the transformation of skeletal muscle type. Nature 263:30–34

    Article  PubMed  CAS  Google Scholar 

  48. Salmons S, Tang ATM, Jarvis JC, Degens H, Hastings M, Hooper TL (1998) Morphological and functional evidence, and clinical importance, of vascular anastomoses in the latissimus dorsi muscle of the sheep. J Anat 193:93–104

    Article  PubMed  Google Scholar 

  49. Shortland A, Black RA, Jarvis JC, Salmons S (1996) Factors influencing vortex development in a model of a skeletal muscle ventricle. Artif Org 20:1026–1033

    Article  CAS  Google Scholar 

  50. Shortland AP, Black RA, Jarvis JC, Henry FS, Iudicello F, Collins MW, Salmons S (1996) Formation and travel of vortices in model ventricles: application to the design of skeletal muscle ventricles. J Biomech 29:503–511

    Article  PubMed  CAS  Google Scholar 

  51. Shortland AP, Black RA, Jarvis JC, Salmons S (1996) A novel video technique for visualizing flow structures in cardiovascular models. J Biomech 29:239–244

    Article  PubMed  CAS  Google Scholar 

  52. Shortland AP, Iudicello F, Black RA, Jarvis JC, Henry FS, Collins MW, Salmons S (1997) Physical and numerical simulation of blood flow within a skeletal muscle ventricle. In: Carpentier AF, Chachques JC, Grandjean PA (eds) Cardiac Bioassist. Futura Publishing Co. Inc., Armonk, New York, pp 567–573

    Google Scholar 

  53. Sutherland H, Jarvis JC, Kwende MMN, Gilroy SJ, Salmons S (1998) The dose-related response of rabbit fast muscle to long-term low-frequency stimulation. Muscle Nerve 21:1632–1646

    Article  PubMed  CAS  Google Scholar 

  54. Tang ATM, Geraghty P, Dascombe MJ, Jarvis JC, Salmons S, Hooper TL (1998) Nitroglycerine reduces neutrophil activation and acute damage in latissimus dorsi muscle grafts. Ann Thorac Surg 66:2015–2021

    Article  PubMed  CAS  Google Scholar 

  55. Tang ATM, Jarvis JC, Hooper TL, Salmons S (1998) Observation and basis of improved blood flow to the distal latissimus dorsi muscle: a case for electrical stimulation prior to grafting. Cardiovasc Res 40:131–137

    Article  PubMed  CAS  Google Scholar 

  56. Tang ATM, Jarvis JC, Hooper TL, Salmons S (1999) Cardiomyoplasty: the benefits of electrical prestimulation of the latissimus dorsi muscle in situ. Ann Thorac Surg 68:46–51

    Article  PubMed  CAS  Google Scholar 

  57. Tang G, Hooper T (1997) Dynamic cardiomyoplasty. Br J Hosp Med 57:329–332

    PubMed  CAS  Google Scholar 

  58. Thomas GA, Baciewicz FA, Jr, Hammond RL, Greer KA, Lu H, Bastion S, Jindal P, Stephenson LW (1998) Power output of pericardium-lined skeletal muscle ventricles, left ventricular apex to aorta configuration: up to eight months in circulation. J Thorac Cardiovasc Surg 116:1029–1042

    Article  PubMed  CAS  Google Scholar 

  59. Thomas GA, Isoda S, Hammond RL, Lu HP, Nakajima H, Nakajima HO, Greer K, Gilroy SJ, Salmons S, Stephenson LW (1996) Pericardium-lined skeletal muscle ventricles: up to two years’ in-circulation experience. Ann Thorac Surg 62:16981706

    Google Scholar 

  60. Trainini JC (1999) Dynamic cardiomyoplasty and aortomyoplasty: the Buenos Aires experience. Basic Appl Myol 8:413–418

    Google Scholar 

  61. van Doom CAM, Bhabra MS, Hopkinson DN, Barman D, Cranley JJ, Hooper TL (1996) Latissimus dorsi muscle blood flow during synchronized contraction - implications for cardiomyoplasty. Ann Thorac Surg 61:603–609

    Article  Google Scholar 

  62. van Doom CAM, Degens H, Bhabra MS, Till CBW, Shaw TE, Jarvis JC, Salmons S, Hooper TL (1997) Intramural blood flow of skeletal muscle ventricles functioning as aortic counterpulsators. Ann Thorac Surg 64:86–93

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salmons, S. (2000). Cardiac assistance from skeletal muscle achieving a viable and appropriately transformed graft. In: Brett, W., Todorov, A., Pfisterer, M., Zerkowski, HR. (eds) Surgical Remodeling in Heart Failure. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57705-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57705-5_4

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-7985-1223-8

  • Online ISBN: 978-3-642-57705-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics