Summary
The optimal solution set M(t) to some parametric optimization problem
is said to be roughly stable w.r.t. the roughness degree r > 0 at \( \bar t \in T\) if for all ∈ > 0 there is a neighborhood \( V\left( {\bar t} \right) \subset T\) of \( \bar t\) such that \( \left( {{ \cup _{t \in V\left( {\bar t} \right)}}M\left( t \right)} \right) < r + \in \) diam This paper states some sufficient conditions for this kind of generalized stability. One of the most important assumptions is that f is strictly roughly convexlike w.r.t. the roughness degree r. The result is applied to some optimal control problems, in particular, to a shipping problem.
Keywords
- Optimal Control Problem
- Transportation Cost
- Neighborhood Versus
- Shipping Problem
- Linear Normed Space
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K. (1982): Non-Linear Parametric Optimization. Akademie-Verlag, Berlin
Brosowski, B. (1976): Zur stetigen Abhängigkeit der Menge der Minimalpunkte bei gewissen Minimierungsaufgaben. Lecture Notes in Mathematics, vol. 556, 63–72, Springer-Verlag, Berlin Heidelberg New York
Dantzig, G. B., Folkman, J., Shapiro, N. (1967): On the Continuity of the Minimum Set of a Continuous Function. Journal of Mathematical Analysis and Applications 17, 519–548
Evans, J. P., Gould, F. J. (1970): Stability in Nonlinear Programming. Operations Research 18, 107–118
Greenberg, H. J., Pierskalla, W. P. (1975): Stability Theorems for Infinitely Constrained Mathematical Program. Journal of Optimization Theory and Applications 16, 409–428
Klatte, D. (1994): On Quantitative Stability for Non-Isolated Minima. Control and Cybernetics, 24, 183–200
Kummer, B. (1977): Global Stability of Optimization Problems. Optimization 8, 367–383
Malanowski, K. (1987): Stability of Solutions to Convex Problems of Optimization. Lecture Notes in Control and Information Sciences, vol. 93, Springer-Verlag, Berlin Heidelberg New York
Robinson, S. M. (1975): Stability Theory for System of Inequalities. SIAM Journal on Numerical Analysis 12, 754–769
Phu, H.X. (1984): Zur Stetigkeit der Lösung der adjungierten Gleichung bei Aufgaben der optimalen Steuerung mit Zustandsbeschränkungen. Zeitschrift für Analysis und ihre Anwendungen 3, 527–539
Pickenhain, S., Tammer, K. (1991): Sufficient Conditions for Local Optimality in Multidimensional Control Problems with State Restrictions. Zeitschrift für Analysis und ihre Anwendungen 10, 397–405
Phu, H. X. (1995): Strictly Roughly Convexlike Functions. Preprint 95–02, IWR, University of Heidelberg
Phu, H. X. (1993): γ-Subdifferential and γ-Convexity of Functions on the Real Line. Applied Mathematics & Optimization 27, 145–160
Phu, H. X. (1995): γ-Subdifferential and γ-Convexity of Functions on a Normed Space. Journal of Optimization Theory and Applications 85, 649–676
Hogan, W. W. (1973): Point-to-Set Maps in Mathematical Programming. SIAM Review 15 (3), 591–603
Bouligand, G. (1932): Sur la Semi-Continuité d’Inclusions et Quelques Sujets Connexes. Enseignement Mathématique, 31 14–22
Kuratowski, K. (1932): Les Fonctions Semi-Continues dans l’Espace des Ensembles Fermés. Fundamenta Mathematicae, 18, 148–159
Aubin J.-P., Frankowska H. (1990): Set-Valued Analysis. Birkhäuser, Boston-Basel-Berlin
Berge, C. (1963): Topological Spaces. Oliver & Boyd, Edinburgh and London
Feichtinger, G., Hartl, R. F. (1986): Optimale Kontrolle Ökonomischer Prozesse. Walter de Gruyter, West-Berlin
Ioffe, A. D., Tichomirov, V. M. (1979): Theory of Extremal Problems. North-Holland Publishing Company, Amsterdam New York Oxford
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Phu, H.X., Bock, H.G., Pickenhain, S. (2000). Rough Stability of Solutions to Nonconvex Optimization Problems. In: Dockner, E.J., Hartl, R.F., Luptačik, M., Sorger, G. (eds) Optimization, Dynamics, and Economic Analysis. Physica, Heidelberg. https://doi.org/10.1007/978-3-642-57684-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-57684-3_3
Publisher Name: Physica, Heidelberg
Print ISBN: 978-3-642-63327-0
Online ISBN: 978-3-642-57684-3
eBook Packages: Springer Book Archive