Skip to main content

Densitometrische Methoden zur quantitativen Beurteilung von pathologischen Knochenveränderungen

  • Chapter
Bisphosphonattherapie von Knochenerkrankungen
  • 16 Accesses

Zusammenfassung

Bei der quantitativen Beurteilung des Knochens mit densitometrischen Verfahren werden zwei verschiedene physikalische Eigenschaften des Knochens erfasst: Die Masse des Knochens und die Geometrie bzw. die Größe des Knochens. Fast alle der heutzutage anerkannten densitometrischen Verfahren verwenden zur Bestimmung dieser beiden Eigenschaften Röntgenstrahlung. Dabei macht man sich die röntgenabsorbierenden Eigenschaften des Knochens, die hauptsächlich durch seine mineralische Matrix bestimmt werden, zu Nutze. Die physikalischen Wechselwirkungen zwischen der Röntgenstrahlung und dem Knochen werden durch die Gesetze der photoelektrischen Absorption und der Compton-Streuung beschrieben [1]. Aufgrund dieser Gesetze wird deutlich, dass zum einen die physikalische Dichte die entscheidende Größe für die Schwächung der Röntgenstrahlung in Materie ist und dass Elemente höherer Ordnungszahl (z.B. Kalzium) mehr Strahlung schwächen als Elemente niedriger Ordnungszahl (z.B. Wasser). Diese Tatsachen macht man sich zu Nutze um die Masse des Knochens innerhalb des Strahlenganges einer Röntgenröhre quantitativ zu bestimmen. Die zweite physikalische Eigenschaft, die Geometrie des Knochens, wird über bildgebende Verfahren bestimmt. Jedes auf diesen Prinzipien beruhende densitometrische Verfahren erzeugt daher eine Art digitales Röntgenbild, welches zur Bestimmung geometrischer Daten ausgewertet wird. Bei den absorptiometrischen Verfahren zur quantitativen Beurteilung des Knochens kann man zwischen Verfahren, die eine Flächenprojektion des Knochens auswerten und Verfahren welche eine dreidimensionale Darstellung des Knochens nutzen, unterscheiden. Zu den Flächenprojektionsverfahren zählt man die Ein-Energie-Röntgen-Absorptiometrie (Single X-ray Absorptiometry, SXA) und die Zwei-Energien-Röntgen-Absorptiometrie (Dual X-ray Absorptiometry, DXA). Früher wurden statt der Röntgenquellen noch radioaktive Photonenstrahler eingesetzt. Aus diesen Zeiten stammen die entsprechenden Bezeichnungen SPA und DPA (Single- bzw. Dual Photon Absorptiometry). Das Verfahren, welches eine dreidimensionale Darstellung benutzt, ist die Quantitative Computertomographie (Quantitative Computed Tomography, QCT). Für spezielle Anwendungen im peripheren Skelettbereich stehen auch sogenannte pQCT-Geräte (peripheral Quantitative Computed Tomography) zur Verfügung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Curry T, Dowdey JE, Murry RC (1990) Christensen’s physics of diagnostic radiology. 4 ed. Lea & Febiger, Philadelphia London

    Google Scholar 

  2. Jonson R (1993) Mass attenuation coefficients, quantities and units for use in bone mineral determinations. Osteop Int 3:103–106

    Article  CAS  Google Scholar 

  3. Genant HK et al (1996) Noninvasive Assessment of Bone Mineral and Structure — State of the Art. J Bone Mineral Res 11(6):707–730

    Article  CAS  Google Scholar 

  4. Lewis MK, Blake GM, Fogelman I (1994) Patient dose in dual x-ray absorptiometry. Osteoporos Int 4(1):11–15

    Article  PubMed  CAS  Google Scholar 

  5. Njeh CF et al (1996) Radiological assessment of a new bone densitometer — the Lunar EXPERT. Br J Radiol 69(820):335–340

    Article  PubMed  CAS  Google Scholar 

  6. Cameron JR, Sorenson JA (1963) Measurement of bone mineral in vivo: An improved method. Science 142:230–232

    Article  PubMed  CAS  Google Scholar 

  7. Thorson LM, Wahner HW (1986) Single-and dual-photon absorptiometry techniques for bone mineral analysis. J Nucl Med Technol 14(3):163–171

    Google Scholar 

  8. Kelly TL, Crane G, Baran DT (1994) Single X-ray absorptiometry of the forearm: precision, correlation, and reference data. Calcif Tissue Int 54(3):212–218

    Article  PubMed  CAS  Google Scholar 

  9. Augat P, Fuerst T, Genant HK (1998) Quantitative bone mineral assessment at the forearm: a review. Osteoporosis International 8:299–310

    Article  PubMed  CAS  Google Scholar 

  10. Greenfield MA (1992) Current status of physical measurements of the skeleton. Med Phys 19(6):1349–1357

    Article  PubMed  CAS  Google Scholar 

  11. Reed GW (1966) The assessment of bone mineralization from the relative transmission of 241Am and 137CS radiations. Phys Med Biol 11:174

    Google Scholar 

  12. Peppier WW, Mazess RB (1981) Total body bone mineral and lean body mass by dual-photon absorptiometry. I. Theory and measurement procedure. Calcif Tissue Int 33(4):353–359

    Article  Google Scholar 

  13. Mazess R et al (1992) Enhanced precision with dual-energy X-ray absorptiometry. Calcified Tissue International 51(1):14–17

    Article  PubMed  CAS  Google Scholar 

  14. Hans D et al (1997) Effects of a new positioner on the precision of hip bone mineral density measurements. Journal of Bone and Mineral Research, 12(8):1289–1294

    Article  PubMed  CAS  Google Scholar 

  15. Pocock NA et al (1997) A comparison of longitudinal measurements in the spine and proximal femur using lunar and hologic instruments. Journal of Bone and Mineral Research 12(12):2113–2118

    Article  PubMed  CAS  Google Scholar 

  16. Orwoll ES, Oviatt SK (1991) Longitudinal precision of dual-energy x-ray absorptiometry in a multicenter study. J Bone Miner Res 6:191–197

    Article  PubMed  CAS  Google Scholar 

  17. Wahner HW et al (1988) Comparison of dual-energy x-ray absorptiometry and dual photon absorptiometry for bone mineral measurements of the lumbar spine. Mayo Clin Proc 63(11):1075–1084

    PubMed  CAS  Google Scholar 

  18. Lu Y, Gliier CC (1999) Statistical tools in quantitative ultrasound applications. In: Njeh CF et al (eds) Quantitative Ultrasound: Assessment of Osteoporosis and Bone Status. Martin Dunitz, London, pp 78–100

    Google Scholar 

  19. Genant HK et al (1994) Universal standardization for dual x-ray absorptiometry: patient and phantom cross-calibration results. Journal of Bone and Mineral Research 9(10):1503–1514

    Article  PubMed  CAS  Google Scholar 

  20. Cummings SR et al (1994) Does estimating volumetric bone density of the femoral neck improve the prediction of hip fracture? A prospective study. Study of Osteoporotic Fractures Research Group. J Bone Miner Res 9(9):1429–1432

    Article  PubMed  CAS  Google Scholar 

  21. Bjarnason K et al (1995) Dual energy X-ray absorptiometry of the spine — decubitus lateral versus anteroposterior projection in osteoporotic women: comparison to single energy X-ray absorptiometry of the forearm. Bone 16(2):255–260

    Article  PubMed  CAS  Google Scholar 

  22. Faulkner KG, McClung M, Cummings SR (1994) Automated evaluation of hip axis length for predicting hip fracture. J Bone Miner Res 9(7):1065–1070

    Article  PubMed  CAS  Google Scholar 

  23. Felsenberg D et al (1995) Recent developments in DXA. Quality of new DXA/ MXA-devices for densitometry and morphometry. European Journal of Radiology 20(3):179–184

    Article  PubMed  CAS  Google Scholar 

  24. Lang T et al (1997) A preliminary evaluation of the lunar expert-XL for bone densitometry and vertebral morphometry. J Bone Miner Res 12(1):136–143

    Article  PubMed  CAS  Google Scholar 

  25. Myers ER et al (1993) Geometric variables from DXA of the radius predict forearm fracture load in vitro. Calcif Tissue Int 52(3):199–204

    Article  PubMed  CAS  Google Scholar 

  26. Faulkner KG et al (1993) Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res 8(10):1211–1217

    Article  PubMed  CAS  Google Scholar 

  27. Genant H et al (1982) Quantitative computed tomography of vertebral spongiosa: A sensitive method for detecting early bone loss after oophorectomy. Ann Int Med 97(5):699–705

    PubMed  CAS  Google Scholar 

  28. Guglielmi G et al (1994) Osteoporosis: diagnosis with lateral and posteroanterior dual x-ray absorptiometry compared with quantitative CT. Radiology 192(3):845–850

    PubMed  CAS  Google Scholar 

  29. Augat P, Reeb H, Claes L (1996) Prediction of fracture load at different skeletal sites by geometrical properties of the cortical shell. J Bone Mineral Research 11(9):1356–1363

    Article  CAS  Google Scholar 

  30. Lang TF et al (1997) Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone 21(1):101–108

    Article  PubMed  CAS  Google Scholar 

  31. Gluer CC, Genant HK (1989) Impact of marrow fat on accuracy of quantitative CT. J Comput Assist Tomogr 13(6):1023–1035

    Article  PubMed  CAS  Google Scholar 

  32. Cann CE (1987) Quantitative CT applications: comparison of current scanners. Radiology 162(1 Pt 1):257–261

    PubMed  CAS  Google Scholar 

  33. van Kuijk C et al (1990) Evaluation of postprocessing dual-energy methods in quantitative computed tomography. Part 2. Practical Aspects. Invest Radiol 25:882–889

    Article  PubMed  Google Scholar 

  34. Goodsitt M et al (1987) Two postprocessing CT techniques for determining the composition of trabecular bone. Invest Radiol 22:209–215

    Article  PubMed  CAS  Google Scholar 

  35. Lang TF et al (1999) Assessment of vertebral bone mineral density using volumetric quantitative CT. J Comput Assist Tomogr 23(1):130–137

    Article  PubMed  CAS  Google Scholar 

  36. Esses SI, Lotz JC, Hayes WC (1989) Biomechanical properties of the proximal femur determined in vitro by single-energy quantitative computed tomography. J Bone Miner Res 4(5):715–722

    Article  PubMed  CAS  Google Scholar 

  37. Lotz JC, Hayes WC (1990) The use of quantitative computed tomography to estimate risk of fracture of the hip from falls. J Bone Joint Surg [Am] 72(5):689–700

    CAS  Google Scholar 

  38. Müller R, Hildebrand T, Ruegsegger P (1994) Non-invasive bone biopsy: a new method to analyse and display the three-dimensional structure of trabecular bone. Phys Med Biol 39(1):145–164

    Article  PubMed  Google Scholar 

  39. Link TM et al (1998) Assessment of trabecular structure using high resolution CT images and texture analysis. J Comput Assist Tomogr 22(1):15–24

    Article  PubMed  CAS  Google Scholar 

  40. Majumdar S, Weinstein R, Prasad R (1993) Application of fractal geometry techniques to the study of trabecular bone. Med Phys 20(6):1611–1619

    Article  PubMed  CAS  Google Scholar 

  41. Engelke K et al (1996) A digital model of trabecular bone. J Bone Miner Res 11(4):480–489

    Article  PubMed  CAS  Google Scholar 

  42. Müller R et al (1996) Morphometric analysis of noninvasively assessed bone biopsies: comparison of high-resolution computed tomography and histologic sections. Bone 18(3):215–220

    Article  PubMed  Google Scholar 

  43. Odgaard A (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20(4):315–328

    Article  PubMed  CAS  Google Scholar 

  44. Takada M et al (1996) Accuracy and Precision Study In Vitro For Peripheral Quantitative Computed Tomography. Osteoporosis Int 6:207–212

    Article  CAS  Google Scholar 

  45. Louis O et al (1996) Cortical and total bone mineral content of the radius: Accuracy of peripheral QCT. Bone 18(5):467–472

    Article  PubMed  CAS  Google Scholar 

  46. Augat P et al (1998) Accuracy of cortical and trabecular bone measurements with peripheral quantitative computed tomography (pQCT). Phys Med Biol 43(10):2873–2883

    Article  PubMed  CAS  Google Scholar 

  47. Overton TR, Wheeler GD (1992) Bone mass measurements in the distal forearm using dual-energy x-ray absorptiometry and gamma-ray computed tomography: a longitudinal, in vivo comparative study. J Bone Miner Res. 7(4):375–381

    Article  PubMed  CAS  Google Scholar 

  48. McClean BA et al (1990) A special purpose x-ray fan-beam CT scanner for trabecular bone density measurement in the appendicular skeleton. Phys Med Biol, 35(1):11–19

    Article  PubMed  CAS  Google Scholar 

  49. Wapniarz M et al (1994) Precision of dual X-ray absorptiometry and peripheral computed tomography using mobile densitometry units. Calcif Tissue Int 54(3):219–223

    Article  PubMed  CAS  Google Scholar 

  50. Butz S et al (1994) Forearm BMD as measured by peripheral quantitative computed tomography (pQCT) in a German reference population. Osteoporos Int 4(4):179–184

    Article  PubMed  CAS  Google Scholar 

  51. Grampp S et al (1995) Assessment of the skeletal status by peripheral quantitative computed tomography of the forearm: short-term precision in vivo and comparision to dual X-ray absorptiometry. J Bone Miner Res 10:1566–1576

    Article  PubMed  CAS  Google Scholar 

  52. Augat P et al (1998) Distal radius fractures: Mechanisms of injury and strength prediction by bone mineral assessment. Journal of Orthopaedic Research 16:629–635

    Article  PubMed  CAS  Google Scholar 

  53. Heaney RP, Kanis JA (1996) The interpretation and utility of ultrasound measurements of bone. Bone 18(6):491–492

    Article  PubMed  CAS  Google Scholar 

  54. Langton CM, Palmer SB, Porter RW (1984) The measurement of broadband ultrasonic attenuation in cancellous bone. Eng Med 13(2):89–91

    Article  PubMed  CAS  Google Scholar 

  55. Gluer CC, Jergas M, Hans D (1997) Peripheral measurement techniques for the assessment of osteoporosis. Semin Nucl Med 27(3):229–247

    Article  PubMed  CAS  Google Scholar 

  56. Bauer DC et al (1997) Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Study of Osteoporotic Fractures Research Group. Archives of Internal Medicine 157(6):629–634

    Article  PubMed  CAS  Google Scholar 

  57. Orgee JM et al (1996) A precise method for the assessment of tibial ultrasound velocity. Osteoporos Int 6(1):1–7

    Article  PubMed  CAS  Google Scholar 

  58. Ingle BM et al (1998) Quantitative ultrasound measurements: can QUS detect longitudinal changes?. J Clin Densitometry 1:100

    Google Scholar 

  59. Jergas M, Schmid G (1999) The role of quantitative ultrasound versus other techniques in osteoporosis assessment. In: Njeh CF et al (eds) Quantitative Ultrasound: Assessment of Osteoporosis and Bone Status. Martin Dunitz, London, p 245–281

    Google Scholar 

  60. Gluer CC et al (1992) Site-matched calcaneal measurements of broad-band ultrasound attenuation and single X-ray absorptiometry: do they measure different skeletal properties?. J Bone Miner Res 7(9):1071–1079

    Article  PubMed  CAS  Google Scholar 

  61. Faulkner KG et al (1994) Quantitative ultrasound of the heel: correlation with densitometric measurements at different skeletal sites. Osteoporos Int 4(1):42–47

    Article  PubMed  CAS  Google Scholar 

  62. Bauer DC et al (1995) Quantitative ultrasound and vertebral fracture in postmenopausal women. Fracture Intervention Trial Research Group. Journal of Bone and Mineral Research 10(3):353–358

    CAS  Google Scholar 

  63. Turner CH et al (1995) Calcaneal ultrasonic measurements discriminate hip fracture independently of bone mass. Osteoporosis International 5(2):130–135

    Article  PubMed  CAS  Google Scholar 

  64. Hans D et al (1996) Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348(9026):511–514

    Article  PubMed  CAS  Google Scholar 

  65. Melton LJd et al (1993) Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 8(10):1227–1233

    Article  PubMed  Google Scholar 

  66. Cummings SR et al (1993) Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 341(8837):72–75

    Article  PubMed  CAS  Google Scholar 

  67. Augat P et al (1998) Assessment of bone mineral at appendicular sites in females with fractures of the proximal femur. Bone 22(4):395–402

    Article  PubMed  CAS  Google Scholar 

  68. Cummings SR, Black D (1995) Bone mass measurements and risk of fracture in Caucasian women: a review of findings from prospective studies. Am J Med 98(2A):24S–28S

    Article  PubMed  CAS  Google Scholar 

  69. World Health Organization (1994) Assessment of Fracture Risk and Its Application to screening for Postmenopausal Osteoporosis. WHO Technical Report Series, Geneva, WHO

    Google Scholar 

  70. Johnston C Jr, Slemenda C, Melton L III (1991) Clinical use of bone densitometry. N Engl J Med 324(16):1105–1109

    Article  PubMed  Google Scholar 

  71. Rubin SM, Cummings SR (1992) Results of bone densitometry affect women’s decisions about taking measures to prevent fractures. Ann Int Medicine 116:990–995

    CAS  Google Scholar 

  72. Slemenda CW, Johnston CC, Hui SL (1996) Assessing Fracture Risk. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. Academic Press, San Diego, p 1055–1074

    Google Scholar 

  73. Gliier CC (1997) Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. The International Quantitative Ultrasound Consensus Group. Journal of Bone and Mineral Research 12(8):1280–1288

    Article  Google Scholar 

  74. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. Bmj 312(7041):1254–1259

    Article  PubMed  CAS  Google Scholar 

  75. Hayes WC, Piazza SJ, Zysset PK (1991) Biomechanics of fracture risk prediction of the hip and spine by quantitative computed tomography. Radiol Clin North Am 29(1):1–18

    PubMed  CAS  Google Scholar 

  76. Seeley D et al (1991) Which fractures are associated with low appendicular bone mass in elderly women? Annals of Internal Medicine 115:837–842

    PubMed  CAS  Google Scholar 

  77. Ross PD, Davis JW, Wasnich RD (1993) Bone mass and beyond: risk factors for fractures. Calcif Tissue Int 53(Suppl 1):134–137; discussion S137-138

    Article  Google Scholar 

  78. Wahner HW (1996) Use of Densitometry in Management of Osteoporosis. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. Academic Press, San Diego, p 1055–1074

    Google Scholar 

  79. Pols HA et al (1999) Multinational, placebo-controlled, randomized trial of the effects of alendronate on bone density and fracture risk in postmenopausal women with low bone mass: results of the FOSIT study. Fossamax International Trial Study Group. Osteoporosis International 9(5):461–468

    Article  PubMed  CAS  Google Scholar 

  80. Schneider PF et al (1999) Alendronate increases bone density and bone strength at the distal radius in postmenopausal women. Journal of Bone and Mineral Research 14(8):1387–1393

    Article  PubMed  CAS  Google Scholar 

  81. Gallagher JH (1996) Estrogen: Prevention and Treatment of Osteoporosis. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. Academic Press, San Diego, p 1191–1208

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Augat, P. (2001). Densitometrische Methoden zur quantitativen Beurteilung von pathologischen Knochenveränderungen. In: Kurth, A.A., Hovy, L., Hennigs, T. (eds) Bisphosphonattherapie von Knochenerkrankungen. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57626-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57626-3_7

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-7985-1266-5

  • Online ISBN: 978-3-642-57626-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics