Advertisement

Bewahrung der Knochenqualität in Tumorosteolysen durch Bisphosphonate

  • A. A. Kurth

Zusammenfassung

In den Staaten der Europäischen Gemeinschaft treten jährlich etwa 1,5 Millionen Neuerkrankungen von malignen Tumoren auf und etwa 850 000 Patienten versterben an ihrem Tumorleiden [13]. Das Skelettsystem stellt nach der Lunge und der Leber das dritthäufigste Zielorgan für eine Metastasierung eines primären extraossären malignen Tumors dar [2, 13, 21]. Prinzipiell kann jeder maligne Tumor in den Knochen metastasieren, aber Karzinome der Mamma, der Prostata, der Lunge, der Niere und der Schilddrüse zeigen eine besondere Affinität zum Skelett (Osteotropismus) und verursachen mehr als 80% der Knochenmetastasen. Legt man Ergebnisse von Autopsieserien zugrunde, dann sind etwa 70-85% aller Frauen, die an einem metastasierenden Mammakarzinom versterben, von knöchernen Metastasen betroffen [6]. In Deutschland sind jährlich ca. 20000-25 000 Patientinnen mit einem Mammakarzinom wegen ossären Komplikationen behandlungsbedürftig [24]. Wegen des hohen Auftretens und dem relativ langen Krankheitsverlauf des Mamma- und Prostatakarzinoms [3, 20, 25] stellen Knochenmetastasen dieser Primärtumoren ein großes therapeutisches Problem dar. Etwa Zweidrittel aller Patienten mit einem Mammakarzinom werden eine Wirbelsäulenfraktur oder eine Fraktur eines langen Röhrenknochens erleiden [5, 12]

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Bauss F (1997) Ibandronate in malignant bone diseases and osteoporosis-preclinical results. Onkologie 20:204–208CrossRefGoogle Scholar
  2. 2.
    Coleman R (1994) Incidence and distribution of bone metastases. In: Diel IJ, Kaufmann E, Bastert G (ed) Metastatic Bone Disease. Springer, Berlin Heidelberg New York, pp 20–30CrossRefGoogle Scholar
  3. 3.
    Coleman R, Rubens RD (1987) The clinical course of bone metastases in breast cancer. Cancer 55:61–66CrossRefGoogle Scholar
  4. 4.
    Diel IJ, Solomayer EF, Costa SD, Gollan C, Goerner R, Wallwiener D, Kaufmann M, Bastert G (1998) Reduction in new metastases in breast cancer with adjuvant clodronate treatment. Engl J Med 6:357–363CrossRefGoogle Scholar
  5. 5.
    Galasko CBS (1988) The role of the orthopaedic surgeon in the treatment of bone pain. Cancer Surv. 7:103–125PubMedGoogle Scholar
  6. 6.
    Galasko CSB (1986) Skeletal Metastases. Butterworth and Co.Ltd., London Boston DurbanGoogle Scholar
  7. 7.
    Guaitani A, Polentarutti N, Filippeschi S, Marmonti L, Corti F, Italia C, Coccioli G, Donelli MG, Mantovani A, Garattini S (1984) Effects of disodium etidronate in murine tumor models. Eur J Cancer Clin Oncol 20:685–693PubMedCrossRefGoogle Scholar
  8. 8.
    Hipp JA, Springfield D, Hayes WC (1995) Predicting pathologic fracture risk in the management of metastatic bone defects. Clin Orthop Rel Res 312:120–135Google Scholar
  9. 9.
    Hortobagyi GN, Theriault RL, Porter L, Blayney D, Lipton A, Sinoff C, Wheeler H, Simeone JF, Seaman J, Knight RD (1996) Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. Protocol 19 Aredia Breast Cancer Study Group [see comments]. N Engl J Med 335:1785–1791PubMedCrossRefGoogle Scholar
  10. 10.
    Jung A, Bornard J, Mermillod B, Edouard C, Meunier PJ (1984) Inhibition by diphosphonates of bone resorption induced by the Walker tumor of the rat. Cancer Res 44:3007–3011PubMedGoogle Scholar
  11. 11.
    Kanis JA, McCloskey EV, Taube T, O’Rourke N (1991) Rationale for the use of bisphosphonates in bone metastases. Bone 12Suppl 1:S13-8:S13–S18PubMedCrossRefGoogle Scholar
  12. 12.
    Kanis JA, Powels T, Paterson AH, McCloskey E, Ashley S (1996) Clodronate decreases the frequency of skeletal metastases in women with breast cancer. Bone 19:663–667PubMedCrossRefGoogle Scholar
  13. 13.
    Kaufmann M (1999) Breast Cancer. In: Anonymous Colwood House Medical Publications, Berkshire, UK, pp 2–14Google Scholar
  14. 14.
    Krempien B, Bu P (1994) Experimental studies on the influence of the bisphosphonate CL2MBP on bone conditioned media and their effect on tumor cell growth in vitro. J Bone Mineral Res 9:424Google Scholar
  15. 15.
    Krempien B, Manegold C (1993) Prophylactic treatment of skeletal metastases, tumor-induced osteolysis, and hypercalcemia in rats with the bisphosphonate C12MBP. Cancer 72:91–98PubMedCrossRefGoogle Scholar
  16. 16.
    Krempien B, Wingen F, Eichmann T, Müller M, Schmahl D (1988) Protective effects of a prophylactic treatment with the bisphosphonate 3-amino-l-hydroxy-propane-l, l-bisphosphonic acid on the development of tumor osteopathies in the rat: experimental studies with the Walker carcinosarcoma 256. Oncology 45:41–46PubMedCrossRefGoogle Scholar
  17. 17.
    Kurth AA, Kim S-Z, Bauss F, Sedelmeyer I, Shea M (1998) Preventative treatment with ibandronate improves bone quality in rat femora with tumot-induced osteolytic defects. Proceedings Orthopaedic Research SocietyGoogle Scholar
  18. 18.
    Kurth AA, Kim S-Z, Sedelmeyer I, Hovy L, Bauss F (2000) Treatment with Ibandronate (BM 21.0955) preserves bone in experimental tumor induced bone loss. J Bone Joint Surg [Br] 82B:126–130CrossRefGoogle Scholar
  19. 19.
    Kurth A., Wang C, Shea M, Hayes WC (1997) An animal model for the evaluation of biomechanical and densitometric properties of tumor induced bone loss. Barcelona. European Orthopaedic Research Society Annual Meeting. (GENERIC) Ref Type: Conference ProceedingGoogle Scholar
  20. 20.
    Rubens RD (1993) Metastatic breast cancer. Curr Opin Oncol. 5:991–995PubMedCrossRefGoogle Scholar
  21. 21.
    Rubens RD (1998) Bone metastases-the clinical problem. Eur J Cancer 34:210–213PubMedCrossRefGoogle Scholar
  22. 22.
    Sasaki A, Boyce BF, Story B, Wright KR, Chapman M, Boyce R, Mundy GR, Yoneda T (1995) Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res 55:3551–3557PubMedGoogle Scholar
  23. 23.
    Sedar-Obermeier M, Bauss F (1995) Effects of the bisphosphonate BM 21.0955 on hypercalcemia and hypercalcuria induced by Walker carcinosarcoma 256 in TPTX rats. Calcif Tissue Int 53(Suppl l):70Google Scholar
  24. 24.
    Statistisches Bundesamt (Hrsg) (1995) Statistisches Jahrbuch der Bundesrepublik Deutschland 1995 (Gesundheitswesen). Metzler und Poeschel, StuttgartGoogle Scholar
  25. 25.
    Toma S, Venturino A, Formica C, Bignotti B, Bonassi S, Palumbo R (1993) Metastatic bone tumors: non-surgical treatment, outcome and survival. Clin Orthop Rel Res 295:246–251Google Scholar
  26. 26.
    van der Pluijm G, Vloedgraven H, van Beek E, van der Wee-Pals L, Lowik C, Papapoulos S (1996) Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro. J Clin Invest 98:698–705PubMedCrossRefGoogle Scholar
  27. 27.
    Wingen F, Eichmann T, Manegold C, Krempien B (1986) Effects of new bisphosphonic acids on tumor-induced bone destruction in the rat. J Cancer Res Clin Oncol. 111:35–41PubMedCrossRefGoogle Scholar
  28. 28.
    Wingen F, Schmahl D (1985) Distribution of 3-amino-l-hydroxypropane-l, l-diphosphonic acid in rats and effects on rat osteosarcoma. Arzneimittelforschung 35:1565–1571PubMedGoogle Scholar
  29. 29.
    Yoneda T, Sasaki A, Dunstan C, Williams PJ, Bauss F, De Clerck YA, Mundy GR (1997) Inhibition of osteolytic bone metastasis of breast cancer by combined treatment with the bisphosphonate ibandronate and tissue inhibitor of the matrix metalloproteinase-2. J Clin Invest 99:2509–2517PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • A. A. Kurth

There are no affiliations available

Personalised recommendations