Poisson-Hermite Representation of Solutions for the Equation \(\frac{{{\partial ^2}}}{{\partial {t^2}}}u\left( {x,t} \right) + {\Delta _x}u\left( {x,t} \right) - 2x\cdot{\nabla _x}u\left( {x,t} \right) = 0\)

  • Liliana Forzani
  • Wilfredo Urbina
Conference paper


In this article we will give a characterization of solutions for the equation\( \frac{{{\partial ^2}}}{{\partial {t^2}}}u + {\Delta _z}u - 2x\cdot{\nabla _x}u = 0 \)which are Poisson-Hermite integral of L p n )-functions, \( 1 \leqslant p \leqslant \infty \), following the classical case of characterization of harmonic functions as Poisson integrals of L p -functions.


Gaussian measure Fourier analysis Fourier analysis in several variables maximal functions Poisson-Hermite integrals Hermite expansions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Calderón, C., some remarks on the multiple Weierstrass Transform and Abel summability of multiple Fourier-Hermite series. Studia Math. 32 (1969), 119–148.Google Scholar
  2. 2.
    Forzani, L., unpublished manuscript (1994).Google Scholar
  3. 3.
    Garcia-Cuerva, J. and Rubio de Francia, J.L., Weighted norm inequalities and related topics. North-Holland, Amsterdam (1985).Google Scholar
  4. 4.
    Muckenhoupt, B., Poisson Integrals for Hermite and Laguerre expansions. Trans. Amer. Math. Soc. 139 (1969), 231–242.CrossRefGoogle Scholar
  5. 5.
    Muckenhoupt, B. and Stein, E., Classical expansions and their relation to conjugate harmonic functions. Trans.Amer. Math. Soc. 118 (1965), 19–92.CrossRefGoogle Scholar
  6. 6.
    Stein, E., Singular Integrals and differentiability properties of functions. Princeton Univ. Press, Princeton (1970).Google Scholar
  7. 7.
    Urbina, W., Análisis Armónico Gaussiano: una visión panorámica. Trabajo de Ascenso. Facultad de Ciencias UCV (1998).Google Scholar
  8. 8.
    Zygmund, A., Trigonometric series. 2nd. Ed., Cambridge Univ. Press., Cambridge (1959).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Liliana Forzani
    • 1
  • Wilfredo Urbina
    • 2
  1. 1.Departamento de MatemáticasUniversidad Nacional del Litoral and CONICETArgentina
  2. 2.Escuela de MatemáticasFacultad de Ciencias UCVCaracasVenezuela

Personalised recommendations