Advertisement

Trends in Hölder Approximation

  • Jorge Bustamante
  • Miguel Antonio Jimenéz

Abstract

It is presented a survey of the main known results related with qualitative and quantitative trigonometric or algebraic polynomial approximation in Hölder metric.

Keywords

Lipschitz (Hölder) functions best approximation K-functionals modulus of smoothness Fourier series semigroup of operators homogeneous Banach spaces Bernstein polynomials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. R. Bloom and D. Elliott The modulus of continuity of the remainder in the approximation of Lipschitz functions, J. Approx. Theory, 31 (1981), 59–66.CrossRefGoogle Scholar
  2. 2.
    B. M. Brown, D. Elliot and D. F. Paget Lipschitz constants for the Bernstein polynomials of a Lipschitz continuous function, J. Approx. Theory49 (1987), 196–199.CrossRefGoogle Scholar
  3. 3.
    J. Bustamante, Rate of convergence of singular integrals on Hölder norms, to appear in Math. Nachr.Google Scholar
  4. 4.
    J. Bustamante and C. Castañeda R. The best approximation in Hölder norm, to appear in Extracta Mat.Google Scholar
  5. 5.
    J. Bustamante and M. A. Jimenéz The degree of best approximation in the Lipschitz norm by trigonometric polynomials, Aportaciones Matemáticas, 25 (1999), 23–30.Google Scholar
  6. 6.
    J. Bustamante and M. A. Jimenéz Fourier series and convergence in Lipschitz norms, Aportaciones Matemáticás, 25 (1999), 147–151.Google Scholar
  7. 7.
    J. Bustamante and M. A. Jimenéz Chebyshev and Hölder approximation, Aportaciones Matemáticas, to appear (2000).Google Scholar
  8. 8.
    J. Bustamante, D. Mocencahua and Carlos A. López Smoothness of the remainder and Holder Norm, Aportaciones Matematicas, to appear (2000).Google Scholar
  9. 9.
    P. L Butzer and H. Berens, Semi-Groups of Operators and Approximation, Springer-Verlag, New York/Berlin, 1967.CrossRefGoogle Scholar
  10. 10.
    P. Chandra, On the generalized Féjer means in the metric of Holder spaces, Math. Nachr, 109 (1982), 39–45.CrossRefGoogle Scholar
  11. 11.
    P. Chandra, Degree of approximation of functions in the Hölder metric, J. Indian Math. Soc., 53 (1988), 99–114.Google Scholar
  12. 12.
    P. Chandra, Degree of approximation of functions in the Hader metric by Borel’s means, J. Math. Anal. and Applic., 149 (1990), 236–248.CrossRefGoogle Scholar
  13. 13.
    M. M. Chawla and S. Kumar Convergence of quadratures for Cauchy principal value integral, Computing, 23 (1979), 67–72.CrossRefGoogle Scholar
  14. 14.
    E. Deeba, R. N. Mohapatra, R. S. Rodriguez, On the degree of approximation of some singular integrals, Rediconti di Mat., 8 (1988) 345–355.Google Scholar
  15. 15.
    Z. Ditzian, Some remarks on approximation theorems on various Banach spaces, J. Math. Anal. Appl., 77 (1980), 567–576.CrossRefGoogle Scholar
  16. 16.
    Z. Ditzian and V. Totik, Moduli of Smoothness, Springer-Verlag, New York, 1987.CrossRefGoogle Scholar
  17. 17.
    D. Elliot, On the Hölder semi-norm of the remainder in polynomial approximation, Bull. Austral. Math. Soc., 49 (1994), 421–426.CrossRefGoogle Scholar
  18. 18.
    D. Elliot and D. F. Paget, On the convergence of a quadrature rule for evaluating certain Cauchy principal value integrals: an addendum, Numer. Math., 25 (1976), 287–289.Google Scholar
  19. 19.
    B. Firlejy and L. Rempulska, On some singular integrals in Hölder spaces, Math. Nachr., 170 (1994), 93–100.CrossRefGoogle Scholar
  20. 20.
    H. H. Gonska and R. K. Kovacheva, The second order modulus revisited: remarks, applications, problems, Conferenze del Seminario di Matematica del l’Universitá di Bari, 257 (1994), 1–32Google Scholar
  21. 21.
    M. Górzenska, M. Leśniewicz and L. Rempulska, On approximation of 2π-periodic functions belonging to the Hölder classes, Fasc. Math. 21, (1990) 87–97.Google Scholar
  22. 22.
    M. Górzenska, M. Leśniewicz and L. Rempulska, Approximation theorems for functions of Hölder classes, Ann. Soc. Math. Pol., ser. I, Commentat. Math. 30 (2), (1991) 301–308.Google Scholar
  23. 23.
    M. Górzenska, M. Leśniewicz and L. Rempulska, Strong approximation of functions in Hölder spaces, Acta. Sci. Math (Szeged), 58, (1993) 233–241.Google Scholar
  24. 24.
    M. Górzenska, M. Leśniewicz and L. Rempulska, Strong approximation in Höider norms, Math. Nach., 170, (1994) 127–132.CrossRefGoogle Scholar
  25. 25.
    G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals I, Math. Zeit., 27 (1927–28), 565–606.CrossRefGoogle Scholar
  26. 26.
    N. I. loakimidis, A simple proof of Kalandiya’s theorem in approximation theory, Serdica 9 (1983), 414–416.Google Scholar
  27. 27.
    N. I. loakimidis, An improvement of Kalandiya’s theorem, J. Approx. Theory, 38 (1983), 354–356.CrossRefGoogle Scholar
  28. 28.
    N. I. loakimidis, Further convergence results for the weighted Galerkin method of numerical solution of Cauchy singular integral equations, Math. Comp., 41 (1983), 79–85.CrossRefGoogle Scholar
  29. 29.
    Y. Jiang, Approximation by a kind of trigonometric polynomials in the Hölder metric, J. Beijing Norm. Univ. Nat. Sci., 29 (1993), 50–54.Google Scholar
  30. 30.
    M. A. Jiménez, A new approach to Lipschitz spaces of periodic integrable functions, Aportaciones Matemáticas, 25 (1999), 153–157.Google Scholar
  31. 31.
    A. I. Kalandiya, A direct method of solving the wind theory equation and its application in elasticity theory, Mat. Sbornik 42 (1957), 249–272.Google Scholar
  32. 32.
    A. Khan, On the degree of approximation of K. Picard and E. Poisson-Cauchy singular integrals, Rendiconti di Mat., 2 (1982) 123–128.Google Scholar
  33. 33.
    L. Leindler, Generalizations of Prossdorf’s theorems, Stu. Sic. Math. Hung., 14 (1979), 431–439.Google Scholar
  34. 34.
    L. Leindler, A. Meir and V. Totik, On approximation of continuous functions in Lipschitz norms, Acta Math. Hung., 45 (3–4) (1985), 441–443.CrossRefGoogle Scholar
  35. 35.
    H. Mirkil, Continuos translation of HOlder and Lipschitz functions, Can. J. Math., 12 (1960), 674–685.Google Scholar
  36. 36.
    R. N. Mohapatra, Degree of approximation of Hader continuous functions, Math. Machr., 140 (1989), 91–96.CrossRefGoogle Scholar
  37. 37.
    R. N. Mohapatra, P. Chandra, Hölder continuous functions and their Euler, Borel and Taylor means, Math. Chronicle., 11 (1982) 81–96.Google Scholar
  38. 38.
    R. N. Mohapatra, P. Chandra, Degree of approximation of functions in the Hölder metric, Acta Math. Hung., 41 (1–2) (1983) 67–76.CrossRefGoogle Scholar
  39. 39.
    R. N. Mohapatra, R. S. Rodriguez, On the rate of convergence of singular integrals for Hölder continuous functions, Math. Nachr., 149 (1990) 117–124.CrossRefGoogle Scholar
  40. 40.
    A. Plessner, Eine Kennzeichnung der totalstetig Funktionen, J. Reine Angew. Math., 160 (1929), 26–32.Google Scholar
  41. 41.
    M. Powierska and P. Pych-Taberska, Approximation of continuous functions by certain discrete operators in Milder norms, Funct. Approximatio, Comment. Math., 21 (1992), 75–83.Google Scholar
  42. 42.
    J. Prestin Best approximation in Lipschitz space, Colloquia Math. Soc. J. Bolyai, 49 (1985), 753–759.Google Scholar
  43. 43.
    J. Prestin, On the approximation by de la Valleé Poussin sums and interpolatory polynomials in Lipschitz norms, Analysis Math., 13 (1987), 251–259.CrossRefGoogle Scholar
  44. 44.
    J. Prestin, Trigonometric interpolation in Hölder spaces, J. Approx. Theory, 53 (1988), 145–154.CrossRefGoogle Scholar
  45. 45.
    J. Prestin, Approximation in periodischen Lipschitzraeumen, Rostocker Math. Kolloq, 35 (1988), 77–78.Google Scholar
  46. 46.
    J. Prestin, Trigonometric approximation by Euler means, Constructive theory of functions, Proc. Int. Conf., Verna/Bulg. 1987, (1988), 382–389.Google Scholar
  47. 47.
    J. Prestin, Best approximation and interpolation in algebraic Hölder norms, Collo. Math. Soc. J. Bolyai, 58, (1990), 583–590.Google Scholar
  48. 48.
    J. Prestin, Approximation in Höider norms with higher order differences, Rostock Math. Kolloq. 51 (1997), 33–50.Google Scholar
  49. 49.
    J. Prestin and S. Prössdorf, Error estimates in generalized trigonometric Holder-Zygrnund norms, Zeit. Anal und ihre Anwen., Bd. 9(4) (1990), 343–349.Google Scholar
  50. 50.
    J. Prestin and A. Stosiek, Approximation in Hölder norms with higher order differences, Rostock Math. Kolloq. 51 (1997).Google Scholar
  51. 51.
    S. Prossdorf, Sur Konvergenz der Fourierreihen hölderstetiger Funktionen, Math. Machr., 69 (1975) 7–14.CrossRefGoogle Scholar
  52. 52.
    S. Prössdorf and B. Silbermann, Projektionsverfahren und die näherungsweise Lösung singulärer Gleichungen, Teubner, Leipzig, 1977.Google Scholar
  53. 53.
    S. Prössdorf and B. Silbermann, Numerical Analysis for Integral and Related Operator Equations, Operator Theory, Advance and Applications; vol. 52, Birkhäuser, Berlin 1991.Google Scholar
  54. 54.
    G. E. Shilov, Homogeneous rings of functions, Uspehi Matem. Nauk N. S., 6 (1951), AMS translation 92.Google Scholar
  55. 55.
    Z. Stypinski, Generalization of the theorem of Prössdorf, Funct. Approx. Com ment. Math., 7 (1979), 101–104.Google Scholar
  56. 56.
    G. J. Tsamasphyros and P. Theocaris, On the convergence of Gauss quadrature rule for evaluation of Cauchy type singular integrals, BIT, 17 (1977), 458–464.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Jorge Bustamante
    • 1
  • Miguel Antonio Jimenéz
    • 1
  1. 1.Colonia San Manuel, PueblaUniversidad Autónoma de Puebla Apartado Postal J-27PueMéxico

Personalised recommendations