Advertisement

Polynomial Density in Lp(R,dµ) and Representation of All Measures Which Generate a Determinate Hamburger Moment Problem

  • Andrew G. Bakan

Abstract

For a positive Borel measure µ on ℝ with all finite moments and unbounded support it has been proved that algebraic polynomials are dense in the space \( {L_p}(\mathbb{R},d\mu ),1 \leqslant p < \infty \)if and only if the measure can be represented in the following form:\( d\mu (x) = w{(x)^p}dv(x)\)where v is some finite positive Borel measure on ℝ and w : ℝ → [0,1]is some upper semicontinuous function for which algebraic polynomials are dense in the seminormed space C w 0. Here is derived a similar representation of all measures which generate a determinate Hamburger moment problem.

Keywords

moment problem polynomial density orthogonal polynomials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akhiezer N. I. (1956) On the weighted approximation of continuous functions on the real axis. Uspekhi Mat. Nauk 11, 3–43; AMS Transl. (ser.2) (1962)2295–137.Google Scholar
  2. 2.
    Akhiezer N. I. (1965) The classical moment problem. Oliver & Boyd, EdinburghGoogle Scholar
  3. 3.
    Bakan A. G. (1998) Polynomial Approximation in L p(R 1 ) I. Preprint, Nat. Acad. Sci. of Ukraine, Inst. of Math., Kiev, No.7, 45 pp. Available at http://xxx.lanl.gov/ps/math.CA/9810104 Google Scholar
  4. 4.
    Berg Ch. (1995) Indeterminate moment problem and the theory of entire functions. J. Comput. Appl. Math. 65, 27–55CrossRefGoogle Scholar
  5. 5.
    Berg Ch. (1995) Moment problems and polynomial approximation. Ann. Fac. Sci. Toulouse, Stieltjes special issue, 9–32Google Scholar
  6. 6.
    Berg Ch., Duran A. (1995) The index of determinacy for measures and the l2-norm of orthonormal polynomials. Trans. Amer. Math. Soc. 347, 2795–2811Google Scholar
  7. 7.
    Berg Ch., Pedersen H. L. (1995) Nevanlinna matrices of entire functions. Math. Nachr. 171, 29–52CrossRefGoogle Scholar
  8. 8.
    Bernstein S. (1924) Le problème; de l’approximation des fonctions continues sur tout l’axe réel et l’une de ses applications. Bull. Math. de France 52, 399–410Google Scholar
  9. 9.
    Borichev A., Sodin M. (1998) The Hamburger moment problem and weighted polynomial approximation on discrete subsets of the real line. J. d’Anal. Math. 76, 219–264CrossRefGoogle Scholar
  10. 10.
    De Granges L. (1959) The Bernstein problem. Proc. Amer. Math. Soc. 10, 825–832CrossRefGoogle Scholar
  11. 11.
    Isumi S., Kawata T. (1937) Quasi-analytic class and closure of {t n} in the interval (—∞,∞). Tohoku Math. J. 43, 267–273Google Scholar
  12. 12.
    Hamburger H. (1944) Hermitian transformations of deficiency index (1,1), Jacobi matrices and undetermined moment problems. Amer. J. Math. 66, 489–522CrossRefGoogle Scholar
  13. 13.
    Koosis P. (1988) The logarithmic integral I. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  14. 14.
    Krein M. G. (1947) On the theory of entire functions of exponential type. Izv. Akad. Nauk SSSR, Ser. Mat. 309, 11 (in Russian)Google Scholar
  15. 15.
    Levin B. Ja. (1989) Density of functions, quasianalyticity and subharmonic majorants. Zapiski nauchn. seminarov LOMI 170, 102–156; English transl.(1993), In: J. Soviet Math. 63, 171–201Google Scholar
  16. 16.
    Mergelyan S. N. (1956) Weighted approximation by polynomials. Uspekhi Mat. Nauk 11, 107–152 (Russian); English transi. (ser.2) (1958) 10 Google Scholar
  17. 17.
    Riesz M. (1923) Sur le problème des moments et le théorème de Parseval correspondent. Acta Litt. Ac. Sci. Szeged 1, 209–225Google Scholar
  18. 18.
    Sodin M. L. (1996) Which perturbations of quasianalytic weights preserve quasianaliticity ? How to use de Granges theorem. J. d’Anal Math. 69, 293–309CrossRefGoogle Scholar
  19. 19.
    Sodin M., Yuditskii P. (1997) Another approach to de Granges’ theorem on weighted polynomial approximation. In: Israel Math. Conf. Proc., Amer. Math. Soc., Providence RI 11, 221–227.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Andrew G. Bakan
    • 1
  1. 1.Institute of MathematicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations