Geometric Design by Means of a G2Continuous A-Spline

  • Victoria Hernández
  • Sophia Behar Jequín
  • Jorge Estrada Sarlabous
Conference paper


A cubic A-spline, suitable for free form geometric design is presented in this paper. It is constructed in such a way, that the geometry of the arc in each individual triangle may be further controlled by two additional shape handles: an interior point of the triangle may be interpolated and the symmetry of the arc may be manipulated. In any case, the prescribed interpolation of the endpoints and their corresponding slopes as well as the G2-continuity of the A-spline is attained. Unlike similar A-splines described in the literature (Patterson, Paluszny, Tovar, Bajaj) the exact curvature values at the junction points are not required. In fact this input is replaced by a more qualitative control of the designer on the symmetry of the arcs, which is closer to the spirit of free form design. The arcs are non singular and convex, furthermore, the inflection points of the A-spline must be placed at the junction points, which allows a precise control of the points where the curvature is zero.


algebraic cubic splines free form geometric design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bajaj C., Xu G. (1999), Local Interpolation and Approximation usingG k -ContinuousPiecewise Real Algebraic Curves, Computer Aided Geometric Design, 16: 557–578.CrossRefGoogle Scholar
  2. 2.
    Bajaj C., Xu G. (1994), Data fitting with cubic A-splines. Computer Graphics International, CGI94, Melbourne, AustraliaGoogle Scholar
  3. 3.
    de Boor C., Höllig K., Sabin M. (1987), High accuracy geometric Hermite interpolation. Computer Aided Geometric Design, 4: 269–278.CrossRefGoogle Scholar
  4. 4.
    Farin G. (1993), Curves and Surfaces for Computer Aided Geometric Design, Academic Press.Google Scholar
  5. 5.
    Hernández P. (1973), Unified Approach to the General Theory of Shells, Proc. IASS, Kielce Symposium.Google Scholar
  6. 6.
    Paluszny M., Patterson R. (1992), Curvas algebraicas de grado tres en modelación geomé trica. Quinta Escuela Venezolana de Matemáticas, Univ. de los Andes, Mérida, Venezuela.Google Scholar
  7. 7.
    Paluszny M., Patterson R. (1993), A family of tangent continuous cubic algebraic splines. ACM Transactions on Graphics 12: 209–232.CrossRefGoogle Scholar
  8. 8.
    Paluszny M., Patterson R. (1994)G 2-continuous cubic algebraic splines and their efficient display, Curves and Surfaces II, P.J. Laurent, A. Le Mé hauté, and L.L. Schumacker (eds.), pp. 353–359.Google Scholar
  9. 9.
    Paluszny M., Patterson R. (1998), Geometric control ofG 2-cubic A-splines, Computer Aided Geometric Design 15: 261–287.CrossRefGoogle Scholar
  10. 10.
    Paluszny M., Tovar F., Patterson R. (1999)G 2composite cubic Bezier curves, Journal of Computational and Applied Mathematics, 102: 49–71.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Victoria Hernández
    • 1
  • Sophia Behar Jequín
    • 2
  • Jorge Estrada Sarlabous
    • 1
  1. 1.Centro de Matemática y Física TeóricaMinisterio de Ciencia, Tecnología y Medio AmbienteHavanaCuba
  2. 2.Facultad de Matemática y ComputaciónUniversidad de la HabanaHavanaCuba

Personalised recommendations