Advertisement

Neue Bewegungskorrekturverfahren

  • Markus Weiger
  • Peter Boesiger
Chapter

Zusammenfassung

In Kapitel 5 werden Verfahren zur Bewegungsunterdrückung beschrieben, die heutzutage weitgehend auf kommerziellen MR-Ge-räten implementiert sind: Navigatoren zur Bestimmung der Atemposition für Schichtverfolgung, Gating oder Triggering; EKG-Triggering zur Synchronisation der Messung mit der Herzbewegung. Obwohl diese Techniken bereits recht leistungsfähig sind und gute Ergebnisse erzielen, sind höhere Effizienz und Zuverlässigkeit wünschenswert. Arbeiten zu Ansätzen und Entwicklungen in dieser Richtung werden hier diskutiert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Bailes DR, Gilderdale DJ, Bydder GM, et al. (1985) Respiratory ordered phase encoding (ROPE): a method for reducing respiratory motion artefacts in MR imaging. J Comput Assist Tomogr 9(4):835–838PubMedCrossRefGoogle Scholar
  2. 2.
    Fischer SE, McKinnon GC, Scheidegger MB, et al. (1994) True myocardial motion tracking. Magn Reson Med 31(4):401–413PubMedCrossRefGoogle Scholar
  3. 3.
    Fischer SE, Wickline SA, Lorenz CH (1999) Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med 42:361–370PubMedCrossRefGoogle Scholar
  4. 4.
    Haacke EM, Patrick JL (1986) Reducing motion artifacts in two-dimensional Fourier transform imaging. Magn Reson Imag 4:359–376CrossRefGoogle Scholar
  5. 5.
    Jhooti P, Wiesmann F, Taylor AM, et al. (1998) Hybrid ordered phase encoding (HOPE): an improved approach for respiratory artifact reduction. J Magn Reson Imaging 8(4):968–980PubMedCrossRefGoogle Scholar
  6. 6.
    Kozerke S, Scheidegger MB, Pedersen EM, et al. (1999) Heart motion adapted cine phase-contrast flow measurements through the aortic valve. Magn Reson Med 42(5):970–978PubMedCrossRefGoogle Scholar
  7. 7.
    Sachs TS, Meyer CH, Irarrazabal P, et al. (1995) The diminishing variance algorithm for realtime reduction of motion artifacts in MRI. Magn Reson Med 34(3):412–422PubMedCrossRefGoogle Scholar
  8. 8.
    Sachs TS, Meyer CH, Pauly JM, et al. (2000) The real-time interactive 3-D-DVA for robust coronary MRA. IEEE Trans Med Imaging 19(2):73–79PubMedCrossRefGoogle Scholar
  9. 9.
    Sinkus R, Bornert P (1999) Motion pattern adapted real-time respiratory gating. Magn Reson Med 41(1):148–155PubMedCrossRefGoogle Scholar
  10. 10.
    Stuber M, Botnar RM, Danias PG, et al. (1999) Submillimeter three-dimensional coronary MR angiography with real-time navigator correction: comparison of navigator locations. Radiology 212(2):579–587PubMedGoogle Scholar
  11. 11.
    Taylor AM, Jhooti P, Wiesmann FW, et al. (1997) MRI navigator echo monitoring of temporal changes in diaphragm position; implications for magnetic resonance coronary angiography. Proc Ann Meet Int Soc Magn Reson Med, Vancouver, p 912Google Scholar
  12. 12.
    Weiger M, Bornert P, Proksa R, et al. (1997) Motion-adapted gating based on k-space weighting for reduction of respiratory motion artifacts. Magn Reson Med 38(2):322–333PubMedCrossRefGoogle Scholar
  13. 13.
    Wood ML, Henkelman RM (1985) MR image artifacts from periodic motion. Med Phys 12(2):143–151PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Markus Weiger
  • Peter Boesiger

There are no affiliations available

Personalised recommendations