Molekulare Mechanismen der Präeklampsie

  • E. Beinder

Zusammenfassung

Die Präeklampsie ist eine syndromale Erkrankung in der Schwangerschaft, die sowohl Mutter als auch Kind betrifft und eine hohe Inzidenz von 3–7% aufweist. Eine positive Familienanamnese ist ein Risikofaktor für das Auftreten einer Präeklampsie, weswegen eine genetische Komponente der Erkrankung vermutet wird. Wahrscheinlich wird die Erkrankung nicht monogen vererbt, da monochoriale Zwillinge nur eine geringe Konkordanz in der Entwicklung einer Präeklampsie aufweisen [40]. Die meisten Untersuchungen wiesen einen Zusammenhang zwischen dem Auftreten der Präeklampsie und Genmutationen oder Genpolymorphismen nach, die zu Thrombophilien und/oder arterieller Hypertonie führen und somit die familiäre Häufung der Erkrankung erklären: Die Glu298Asp-Variante im endothelialen Stickstoffmonoxid-synthase-Gen (NOS3), ein 4G/5G-Polymorphismus im PAI-1 (plasminogen activator inhibitor-1)-Gen, die Faktor-V-Leiden-Mutation und die M235T-Variante im Angiotensinogen-Gen erhöhen das Risiko für eine Präeklampsie erheblich. Mutationen im Methylentetrahydrofolatreduktase-Gen, die G20210A-Variante im Prothrombin-Gen und eine Variante des Gluthation-S-Transferase-Gens sind ebenso als Risikofaktoren identifiziert wie alle Mutationen, die zu einer verminderten Funktion von Protein C, Protein S und Antithrombin III führen (Tabelle 1). Da bei Patientinnen mit einer Präeklampsie vermehrt familiäre Dyslipidämien, eine Insulinresistenz oder eine familiäre Adipositas gefunden werden, haben vermutlich auch Mutationen, die zu diesen Erkrankungen führen, eine Bedeutung in der Pathogenese der Präeklampsie. Wahrscheinlich spielt auch das fetale und damit das paternale Genom eine Rolle, da bei Blasenmolen (bei denen das paternale Genom doppelt vorliegt) besonders schwere und sich früh manifestierende Präeklampsien nachweisbar sind.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Baylis C, Engels K (1992) Adverse interactions between pregnancy and a new model of systemic hypertension produced by chronic blockade of endothelial derived relaxing factor (EDRF) in the rat. Clin Exp Hypertens B11:117Google Scholar
  2. 2.
    Baylis C, Beinder E, Sütö T, August P (1998) Recent insights into the roles of nitric oxide and renin-angiotensin in the pathophysiology of pree-clamptic pregnancy. Semin Nephrol 18:208–230PubMedGoogle Scholar
  3. 3.
    Beinder E, Schlembach D (2001) Skin flux during reactive hyperemia and local hyperthermia in patients with preeclampsia. Obstet Gynecol 98(2):313–318PubMedCrossRefGoogle Scholar
  4. 4.
    Beinder E, Mohaupt MG, Schlembach D, Fischer T, Sterzel RB, Lang N, Baylis C (1999) Nitric oxide synthase acitivity and doppler parameters in the utero-and fetoplacental.circulation in preeclampsia. Hypert Preg 18(2):208–230Google Scholar
  5. 5.
    Benirschke K, Kaufmann P (2000) Pathology of the Human Placenta, 4th edn. Springer, New YorkGoogle Scholar
  6. 6.
    Brosens I, Robertson WB, Dixon HG (1967) The physiological response of the vessels of the placental bed to normal pregnancy. J Pathol Bacteriol 67:569CrossRefGoogle Scholar
  7. 7.
    Brosens I, Robertson WB, Dixon HG (1972) The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet Gynaecol Ann 1:177Google Scholar
  8. 8.
    Bürk MR, Troeger C, Brinkhaus R, Holzgreve W, Hahn S (2000) Significantly reduced numbers of tissue macrophages in the basal plate of pre-eclamptic placentae. Placenta 21(Suppl Tropho-blast Res) A28Google Scholar
  9. 8a.
    Caniggia I, Grisaru-Gravnosky S, Kuliszewsky M, Post M, Lye SJ (1999) Inhibition of TGF-beta 3 restores the invasive capability of extravillous tropo-blasts in preeclamptic pregnancies. J Clin Invest 103:1641–1650PubMedCrossRefGoogle Scholar
  10. 9.
    Chappel LC, Seed PT, Briley AL, Kelly FJ, Lee R, Hunt BJ, Parmar K, Bewley SL, Shennan AH, Steer PJ, Poston L (1999) Effect of antioxidants on the occurrence of preeclampsia in women at increased risk: a randomised trial. Lancet 354:810–816Google Scholar
  11. 10.
    Colbern GT, Chiang MH, Main EK (1994) Expression of the nonclassic histocompatibility antigen HLA-G by preeclamptic placenta. Am J Obstet Gynecol 170:1244PubMedGoogle Scholar
  12. 11.
    Damsky CH, Sutherland A, Fisher SJ (1993) Extracellular matrix 5: Adhesive interactions in early mammalian embryogenesis, implantation and pla-centation. FASEB J 7:1320PubMedGoogle Scholar
  13. 12.
    DeBelder A, Lees C, Martin J, Moncada S, Campbell S (1995) Treatment of HELLP-Syndrome with nitric oxide donor (Letter). Lancet 345(8942):124CrossRefGoogle Scholar
  14. 13.
    Defilippi P, Silengo L, Tarone G (1992) α6βl-integ-rin (laminin receptor) is down regulated by tumor necrosis factor a and interleukin 1ß in human endothelial cells. J Biol Chem 267:18303PubMedGoogle Scholar
  15. 14.
    Dekker GA, deVries JI, Doelitzsch PM, Hujgens PC, vonBlomberg BM, Jacobs C, vanGeijn HP (1995) Underlying disorders associated with severe early-onset preeclampsia. Am J Obstet Gynecol 173:1042–1048PubMedCrossRefGoogle Scholar
  16. 15.
    Ellis SA, Palmer MS, McMichael AJ (1990) Human trophoblast and the choriocarcinoma cell line BeWo express a truncated HLA class I molecule. J Immunol 144:731PubMedGoogle Scholar
  17. 16.
    Gant NF, Daley GL, Chand S, Walley PJ, MacDonald PC (1973) A study of angiotensin II pressor response throughout primigravid pregnancy. J Clin Invest 52:2682–2689PubMedCrossRefGoogle Scholar
  18. 17.
    Goldman-Wohl DS, Ariel I, Greenfield C, Hochner-Celnikier D, Cross J, Fisher S, Yagel S (2000) Lack of human leukocyte antigen-G expression in extravillous trophoblasts is associated with preeclampsia. Mol Hum Reprod 6:88PubMedCrossRefGoogle Scholar
  19. 18.
    Graham CH, McCrae KR (1996) Altered expression of gelatinase and surface-associated plasminogen activator activity by trophoblast cells isolated from placentas of preeclamptic patients. Am J Obstet Gynecol 175:555PubMedCrossRefGoogle Scholar
  20. 19.
    Greer IA, Haddad NG, Dawes J, Johnstone FD, Calder AA (1989) Neutrophil activation in pregnancy-induced hypertension. Br J Obstet Gynecol 96:978–982CrossRefGoogle Scholar
  21. 19a.
    Hamai Y, Fujii T, Yamashita T, Miki A, Hyodo H, Kozuma S, Geraghty DE, Taketani Y (1999) The expression of human leukocyte antigen-G on trophoblasts abolishes the growth-suppressing effect of interleukin-2 towards them. Am J Reprod Immunol 41:153–158PubMedCrossRefGoogle Scholar
  22. 20.
    Hara N, Fujii T, Okai T, Taketani Y (1995) Histo-chemical demonstration of Interleukin-2 in decid-ua cells of patients with pre-eclampsia. Am J Reprod Immunol 34:44PubMedGoogle Scholar
  23. 21.
    Hara NT, Fujii T, Yamashita S, Kozuma S, Okai T, Taketani Y (1996) Altered expression of Human Leucocyte Antigen G (HLA-G) on extravillous trophoblast in preeclampsia: immunological demonstration with anti HLA-G specific antibody „87G“ and anticytokeratin antibody „CAM5.2“. Am J Reprod Immunol 36:349–358PubMedCrossRefGoogle Scholar
  24. 22.
    Kobashi G, Shido K, Hata A, Yamada H, Kato EH, Kanamori M, Fujimoto S, Kondo K (2001) Multivariate analysis of genetic and acquired factors; T235 variant of the angiotensinogen gene is a potent independent risk factor for preeclampsia. Semin Thromb Hemost 27(2): 143–147PubMedCrossRefGoogle Scholar
  25. 23.
    Kovats S, Main EK, Librach C, Stubblebine M, Fisher SJ, DeMars R (1990) A class I antigen, HLA-G, expressed in human trophoblasts. Science 248:220PubMedCrossRefGoogle Scholar
  26. 24.
    Kupfermine MJ, Fait G, Many A, Gordon G, Eldor A, Lessing JB (2000) Severe preeclampsia and high frequency of genetic thrombophilic mutations. Obstet Gynecol 96:45–49CrossRefGoogle Scholar
  27. 25.
    Lim KH, Damsky CH, Fisher SJ (1995) Basic fibroblast growth factor and heparin stimulate integrin a 1-expression by cytotrophoblasts. J Soc Gynecol Invest 2:P287CrossRefGoogle Scholar
  28. 26.
    Lyall F, Bulmer JN, Kelly H, Duffie E, Robson SC (1999) Human trophoblast invasion and spiral artery transformation: the role of nitric oxide. Am J Pathol 154:1105PubMedCrossRefGoogle Scholar
  29. 27.
    Meekins JW, Pijnenborg R, Hanssens M, McFadyen IR, vanAssche A (1994) A study of placental bed spiral arteries and trophoblast invasion in normal and severe preeclamptic pregnancies. Br J Obstet Gynaecol 101:669–674PubMedCrossRefGoogle Scholar
  30. 28.
    Morgan T, Craven C, Nelson L, Lalouel JM, Ward K (1997) Angiotensinogen T235 expression is elevated in decidual spiral arteries. J Clin Invest 100:1406PubMedCrossRefGoogle Scholar
  31. 29.
    Morgan T, Craven C, Lalouel JM, Ward K (1999) Angiotensinogen thr235 variant is associated with abnormal physiologic change of the uterine spiral arteries in first trimester decidua. Am J Obstet Gy-necol 180:95CrossRefGoogle Scholar
  32. 30.
    Nanaev A, Chwalisz K, Frank HG, Kohnen G, Hegele-Hartung C, Kaufmann P (1995) Physiological dilation of uteroplacental arteries in the guinea pig depends on nitric oxide synthase activity of extravillous trophoblast. Cell Tissue Res 282:407PubMedCrossRefGoogle Scholar
  33. 31.
    Pijnenborg R, Bland JM, Robertson WB, Brosens I (1983) Uteroplacental arterial changes related to interstitial trophoblast migration in early human pregnancy. Placenta 4:397PubMedCrossRefGoogle Scholar
  34. 32.
    Pijnenborg R, McLaughlin PJ, Vercruysse L, Hanssens M, Johnson PM, Keith JC Jr., Van Assche FA (1998) Immunolocalization of tumour necrosis factor-α (TNF-α) in the placental bed of normotensive and hypertensive human pregnanies. Placenta 19:231PubMedCrossRefGoogle Scholar
  35. 33.
    Powers RW, Minich LA, Lykins DL, Ness RB, Crombleholme WR, Roberts JM (1999) Methylene-tetrahydrofolate reductase polymorphism and preeclampsia. J Soc Gynecol Investig 6:74–79PubMedCrossRefGoogle Scholar
  36. 34.
    Reister F, Frank H-G, Heyl W, Kosanke G, Huppertz B, Schröder W, Kaufmann P, Rath W, (1999) The Distribution of Macrophages in the Placental Bed in Preeclampsia Differs from that in Healthy Patients. Placenta 20:229PubMedCrossRefGoogle Scholar
  37. 35.
    Reister F, Frank H-G, Kingdom JC, Heyl W, Kaufmann P, Rath W, Huppertz B (2001) Macrophageinduced apoptosis limits endovascular trophoblast invasion in the uterine wall of preeclamptic women. Lab Invest 81:1143–1152PubMedGoogle Scholar
  38. 36.
    Reister F, Huppertz B, Frank H-G, Heyl W, Kaufmann P, Rath W (2000b) Macrophages may limit endovascular trophoblast invasion in preeclampsia by inducing trophoblast apoptosis in the placental bed — In-vivo findings. Hypertens Preg 19(S1):40Google Scholar
  39. 37.
    Reister F, Frank H-G, Kingdom J, Heyl W, Pauer U, Rath W, Kaufmann P, Huppertz B (2001) Co-Expression of MMP’s and LIF-R by Periarterial Extravillous Trophoblast in Preeclampsia — Contribution to Reduced Invasiveness? Placenta 22:A.63Google Scholar
  40. 38.
    Sawai K, Matsuzaki N, Okada T, Shimoya K, Koyama M, Azuma C, Saji F, Murata Y (1997) Human decidual cell biosynthesis of leukemia inhibitory factor: Regulation by decidual cytokines and steroid hormones. Biol Reprod 56:1274PubMedCrossRefGoogle Scholar
  41. 39.
    Stallmach T, Hebisch G, Orban P, Lü X (1999) Aberrant positioning of trophoblast and lymphocytes in the feto-maternal interface with preeclampsia. Virchows Arch 434:207PubMedCrossRefGoogle Scholar
  42. 40.
    Thornton JG, Onwude JL (1991) Preeclampsia: Discordance among identical twins. Br Med J 303:1241–1242CrossRefGoogle Scholar
  43. 41.
    Todt JC, Yang Y, Lei J, Lauria MR, Sorokin Y, Cotton DB, Yelian FD (1996) Effects of tumor necrosis factor-alpha on human trophoblast cell adhesion and motility. Am J Reprod Immunol 36:65PubMedCrossRefGoogle Scholar
  44. 42.
    Vedernikov Y, Saade GR, Garfield RE (1999) Vascular reactivity in preeclampsia. Sem Perinatol 23:34–44CrossRefGoogle Scholar
  45. 43.
    Ward K, Hata A, Jeunemaitre X et al (1993) A molecular variant of angiotensinogen asscociated with preeclampsia. Nat Genet 4:59PubMedCrossRefGoogle Scholar
  46. 44.
    Yamada N, Arinami T, Yamakawa-Kobayashi K, Watanabe H, Sohda S, Hamada H, Kubo T, Hamaguchi H (2000) The 4G/5G polymorphism of the plasminogen activator inhibitor-1 gene is associated with severe preeclampsia. J Hum Genet 45(3):138–141PubMedCrossRefGoogle Scholar
  47. 45.
    Yoshimura T, Yoshimura M, Tabata A, Shimasaki Y, Nakayama M, Miyamoto Y, Saito Y, Nakao K, Yasue H, Okamura H (2000) Association of the missense Glu228Asp variant of the endothelial nitric oxide gene with severe preeclampsia. J Soc Gynecol Invest 7:238–241CrossRefGoogle Scholar
  48. 46.
    Zhou Y, Damsky CH, Chiu K, Roberts JM, Fisher SJ (1993) Preeclampsia is associated with abnormal expression of adhesion molecules by invasive cyto-trophoblasts. J Clin Invest 91:950PubMedCrossRefGoogle Scholar
  49. 47.
    Zhou Y, Damsky CH, Fisher SJ (1997) Preeclampsia is associated with failure of human cytotropho-blasts to mimic vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J Clin Invest 99:2152PubMedCrossRefGoogle Scholar
  50. 48.
    Zusterzeel PL, Visser W, Peters WH, Merkus HW, Nelen WL, Steegers EA (2000) Polymorphism in the glutathione S-transferase PI gene and risk for preeclampsia. Obstet Gynecol 96:50–54PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • E. Beinder

There are no affiliations available

Personalised recommendations