Skip to main content

Transkranielle Magnetstimulation in der neuropsychiatrischen Forschung

  • Chapter
Book cover Elektromagnetische Therapien in der Psychiatrie
  • 84 Accesses

Zusammenfassung

Die Anwendung der transkraniellen Magnetstimulation (TMS) in der neuropsychiatrischen Forschung hat in den letzten Jahren erheblich an Bedeutung gewonnen. Mit der TMS bietet sich Wissenschaftlern erstmals die Möglichkeit, das Gehirn gesunder, wacher Erwachsener nichtinvasiv und gezielt zu stimulieren. Auf diese Weise kann einerseits die Erregbarkeit einzelner Areale bestimmt, andererseits aber auch deren Aktivität moduliert werden. Veränderungen kortikaler Erregbarkeit aufgrund von pharmakologischen Interventionen und physiologischen bzw. pathologischen Prozessen können dementsprechend ebenso untersucht werden wie die Lokalisation bestimmter Funktionen. Die dabei gewonnenen Erkenntnisse können zur Erweiterung des Verständnisses von Topographie und funktioneller Architektur kortikaler Physiologie, adaptiver und maladaptiver plastischer Veränderungen, sowie der Pathophysiologie von strukturellen und funktionellen Störungen des zentralen Nervensystems dienen. Die gezielte und kontrollierte Modulation kortikaler Erregbarkeit (Exzitabilität) durch repetitive TMS bietet darüber hinaus neue therapeutische Ansatzpunkte.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Amassian VE, Cracco RQ, Maccabee PJ, Cracco JB, Rudell AP, Eberle L (1989) Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroenceph Clin Neurophys 74:458–462

    Article  CAS  Google Scholar 

  • Amassian VE, Cracco RQ, Maccabee PJ, Cracco JB, Rudell AP, Eberle L (1993) Unmasking human visual perception with the magnetic coil and its relationship to hemispheric asymmetry. Brain Research 605:312–316

    Article  PubMed  CAS  Google Scholar 

  • Aurora SK, Welch KM (1998) Brain excitability in migraine: evidence from transcranial magnetic stimulation studies. Curr Opin Neurol 11:205–209

    Article  PubMed  CAS  Google Scholar 

  • Aurora SK, Ahmad BK, Welch KM, Bhardhwaj P, Ramadan NM (1998) Transcranial magnetic stimulation confirms hyperexcitability of occipital cortex in migraine. Neurology 50:1111–1114

    Article  PubMed  CAS  Google Scholar 

  • Barker A, Freeston I, Jalinous R, Merton P (1985) Magnetic stimulation of the human brain. Journal of Physiology 369:3P

    Google Scholar 

  • Beckers G, Homberg V (1992) Cerebral visual motion blindness: transitory akinetopsia induced by transcranial magnetic stimulation of human area V5. Proc R Soc Lond B Biol Sci 249:173–178

    Article  CAS  Google Scholar 

  • Beckers G, Zeki S (1995) The consequences of inactivating areas V1 and V5 on visual motion perception. Brain 118:49–60

    Article  PubMed  Google Scholar 

  • Berardelli A, Inghilleri M, Rothwell JC, Romeo S, Curra A, Gilio F, Modugno N, Manfredi M (1998) Facilitation of muscle evoked responses after repetitive cortical stimulation in man. Exp Brain Res 122:79–84

    Article  PubMed  CAS  Google Scholar 

  • Boroojerdi B, Battaglia F, Muellbacher W, Cohen LG (2001) Mechanisms influencing stimulus-response properties of the human corticospinal system. Clin Neurophysiol 112:931–937

    Article  PubMed  CAS  Google Scholar 

  • Brasil-Neto JP, Cammarota A, Valls-Sole J, Pascual-Leone A, Hallett M, Cohen LG (1995) Role of intracortical mechanisms in the late part of the silent period to transcranial stimulation of the human motor cortex. Acta Neurol Scand 92:383–386

    Article  PubMed  CAS  Google Scholar 

  • Bütefisch CM, Davis BC, Wise SP, Sawaki L, Kopylev L, Classen J, Cohen LG (2000) Mechanisms of use-dependent plasticity in human motor cortex. PNAS 97:3661–3669

    Article  PubMed  Google Scholar 

  • Bütefisch CM, Davis BC, Sawaki L, Waldvogel D, Classen J, Kopylev L, Cohen LG (2002) Modulation of use-dependent plasticity by δ-amphetamine. Ann Neurol 51:59–68

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG (1997a) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48:1398–1403

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Gerloff C, Hallett M, Cohen LG (1997b) Involvement of the ipsilateral motor cortex in finger movements of different complexities. Ann Neurol 41:247–254

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Samii A, Canos M, Wassermann EM, Hallett M (1997c) Effects of phenytoin on cortical excitability in humans. Neurology 49:881–883

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Tarn A, Butefisch C, Corwell B, Ziemann U, Rothwell JC, Cohen LG (1998) Intracortical inhibition and facilitation in different representations of the human motor cortex. J Neurophysiol 80:2870–2881

    PubMed  CAS  Google Scholar 

  • Chen R, Lozano AM, Ashby P (1999) Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings. Exp Brain Res 128:539–542

    Article  PubMed  CAS  Google Scholar 

  • Classen J, Liepert J, Wise SP, Hallett M, Cohen LG (1998) Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 79:1117–1123

    PubMed  CAS  Google Scholar 

  • Cohen LG, Bandinelli S, Findley TW, Hallett M (1991) Motor reorganization after upper limb amputation in man. A study with focal magnetic stimulation. Brain 114:615–627

    Article  PubMed  Google Scholar 

  • Cohen LG, Celnik P, Pascual-Leone A, Corwell B, Falz L, Dambrosia J, Honda M, Sada-to N, Gerloff C, Catala MD, Hallett M (1997) Functional relevance of cross-modal plasticity in blind humans. Nature 389:180–183

    Article  PubMed  CAS  Google Scholar 

  • Cohrs S, Tergau F, Riech S, Kastner S, Paulus W, Ziemann U, Ruther E, Hajak G (1998) High-frequency repetitive transcranial magnetic stimulation delays rapid eye movement sleep. Neuroreport 9:3439–3443

    Article  PubMed  CAS  Google Scholar 

  • Daskalakis ZJ, Christensen BK, Chen R, Fitzgerald PB, Zipursky RB, Kapur S (2002) Evidence for impaired cortical inhibition in schizophrenia using transcranial magnetic stimulation. Arch Gen Psychiatry 59:347–354

    Article  PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Proficie P, Pennisi MA, Di Giovanni S, Zito G, Tonali P, Rothwell JC (2000) Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Exp Brain Res 135: 455–461

    Article  PubMed  Google Scholar 

  • Epstein CM, Meador KJ, Loring DW, Wright RJ, Weissman JD, Sheppard S, Lah JJ, Puhalovich F, Gaitan L, Davey KR (1999) Localization and characterization of speech arrest during transcranial magnetic stimulation. Clin Neurophysiol 110:1073–1079

    Article  PubMed  CAS  Google Scholar 

  • Epstein CM, Woodard JL, Stringer AY, Bakay RA, Henry TR, Pennell PB, Litt B (2000) Repetitive transcranial magnetic stimulation does not replicate the Wada test. Neurology 55:1025–1027

    Article  PubMed  CAS  Google Scholar 

  • Ferbert A, Mussmann N, Menne A, Buchner H, Hartje W (1991) Short-term memory performance with magnetic stimulation of the motor cortex. Eur Arch Psychiatry Clin Neurosci 241:135–138

    Article  PubMed  CAS  Google Scholar 

  • Flitman SS, Grafman J, Wassermann EM, Cooper V, O’Grady J, Pascual-Leone A, Hallett M (1998) Linguistic processing during repetitive transcranial magnetic stimulation. Neurology 50:175–181

    Article  PubMed  CAS  Google Scholar 

  • Fisher RJ, Nakamura Y, Bestmann S, Rothwell JC, Bostock H (2002) Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. Exp Brain Res 143:240–248

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald PB, Brown TL, Daskalakis ZJ, Kulkarni J (2002) A transcranial magnetic stimulation study of inhibitory deficits in the motor cortex in patients with schizophrenia. Psychiatry Res 114:11–22

    Article  PubMed  Google Scholar 

  • Gangitano M, Valero-Cabre A, Tormos JM, Mottaghy FM, Romero JR, Pascual-Leone A (2002) Modulation of input-output curves by low and high frequency repetitive transcranial magnetic stimulation of the motor cortex. Clin Neurophys 113:1249–1257

    Article  Google Scholar 

  • George MS, Wassermann EM, Williams WA, Steppel J, Pascual-Leone A, Basser P, Hallett M, Post RM (1996) Changes in mood and hormone levels after rapid-rate transcranial magnetic stimulation (rTMS) of the prefrontal cortex. J Neuropsychiatry Clin Neurosci 8:172–180

    PubMed  CAS  Google Scholar 

  • Gerloff C, Corwell B, Chen R, Hallett M, Cohen LG (1997) Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences. Brain 120:1587–1602

    Article  PubMed  Google Scholar 

  • Gerloff C, Cohen LG, Floeter MK, Chen R, Corwell B, Hallett M (1998 a) Inhibitory influence of the ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract. J Physiol 510:249–259

    Article  PubMed  CAS  Google Scholar 

  • Gerloff C, Corwell B, Chen R, Hallett M, Cohen LG (1998 b) The role of the human motor cortex in the control of complex and simple finger movement sequences. Brain 121:1695–1709

    Article  PubMed  Google Scholar 

  • Grafman J, Pascual-Leone A, Alway D, Nichelli P, Gomez-Tortosa E, Hallett M (1994) Induction of a recall deficit by rapid-rate transcranial magnetic stimulation. Neuroreport 5:1157–1160

    Article  PubMed  CAS  Google Scholar 

  • Greenberg BD, Ziemann U, Cora-Locatelli G, Harmon A, Murphy DL, Keel JC, Wassermann EM (2000) Altered cortical excitability in obsessive-compulsive disorder. Neurology 54:142–147

    Article  PubMed  CAS  Google Scholar 

  • Habel U, Wild B, Topka H, Kircher T, Salloum JB, Schneider F (2001) Transcranial magnetic stimulation: no effect on mood with single pulse during learned helplessness. Prog Neuropsychopharmacol Biol Psychiatry 25:497–506

    Article  PubMed  CAS  Google Scholar 

  • Hallett M (2000) Transcranial magnetic stimulation and the human brain. Nature 406:147–150

    Article  PubMed  CAS  Google Scholar 

  • Hess CW, Ludin HP (1988) [Transcranial cortex stimulation with magnetic field pulses: methodologic and physiologic principles]. EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb 19:209–215

    PubMed  CAS  Google Scholar 

  • Hess CW, Mills KR, Murray NM, Schriefer TN (1987) Excitability of the human motor cortex is enhanced during REM sleep. Neurosci Lett 82:47–52

    Article  PubMed  CAS  Google Scholar 

  • Hoffman RE, Boutros NN, Berman RM, Roessler E, Beiger A, Krystal JH, Charney DS (1999) Transcranial magnetic stimulation of left temporoparietal cortex in three patients reporting hallucinated “voices”. Biol Psychiatry 46:130–132

    Article  PubMed  CAS  Google Scholar 

  • Hoffman RE, Boutros NN, Hu S, Berman RM, Krystal JH, Charney DS (2000) Transcranial magnetic stimulation and auditory hallucinations in schizophrenia. Lancet 355:1073–1075

    Article  PubMed  CAS  Google Scholar 

  • Hotson J, Braun D, Herzberg W, Boman D (1994) Transcranial magnetic stimulation of extrastriate cortex degrades human motion direction discrimination. Vision Res 34:2115–2123

    Article  PubMed  CAS  Google Scholar 

  • Hufnagel A, Claus D, Brunhoelzl C, Sudhop T (1993) Short-term memory: no evidence of effect of rapid-repetitive transcranial magnetic stimulation in healthy individuals. J Neurol 240:373–376

    Article  PubMed  CAS  Google Scholar 

  • Ilic TV, Korchounov A, Ziemann U (2002) Complex modulation of human motor cortex excitability by the specific serotonin re-uptake inhibitor sertraline. Neuroci Lett 319:116–120

    Article  CAS  Google Scholar 

  • Jenkins J, Shajahan PM, Lappin JM, Ebmeier KP (2002) Right and left prefrontal transcranial magnetic stimulation at 1 Hz does not affect mood in healthy volunteers. BMC Psychiatry 2:1

    Article  PubMed  Google Scholar 

  • Kammer T (1999) Phosphenes and transient scotomas induced by magnetic stimulation of the occipital lobe: their topographic relationship. Neuropsychologia 37:191–198

    Article  PubMed  CAS  Google Scholar 

  • Karl A, Birbaumer N, Lutzenberger W, Cohen LG, Flor H (2001) Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. J Neurosci 21:3609–3618

    PubMed  CAS  Google Scholar 

  • Kirkwood A, Dudek SM, Gold JT, Aizenman CD, Bear MF (1993) Common forms of synaptic plasticity in the hippocampus and neocortex in vitro. Science 260:1518–1521

    Article  PubMed  CAS  Google Scholar 

  • Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519

    PubMed  CAS  Google Scholar 

  • Liepert J, Tegenthoff M, Malin JP (1995) Changes of cortical motor area size during immobilization. Electroencephalogr Clin Neurophysiol 97:382–386

    Article  PubMed  CAS  Google Scholar 

  • Liepert J, Schwenkreis P, Tegenthoff M, Malin JP (1997) The glutamate antagonist riluzole suppresses intracortical facilitation. J Neural Transm 104:1207–1214

    Article  PubMed  CAS  Google Scholar 

  • Liepert J, Schardt S, Weiller C (2001) Orally administered atropine enhances motor cortex excitability: a transcranial magnetic stimulation study in human subjects. Neurosci Lett 300:149–152

    Article  PubMed  CAS  Google Scholar 

  • Maeda F, Keenan JP, Pascual-Leone A (2000) Interhemispheric asymmetry of motor cortical excitability in major depression as measured by transcranial magnetic stimulation. Br J Psychiatry 177:169–173

    Article  PubMed  CAS  Google Scholar 

  • Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A (2000) Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin Neurophysiol 111:800–805

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC (1994) Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78:535–538

    Article  PubMed  CAS  Google Scholar 

  • Manganotti P, Bortolomasi M, Zanette G, Pawelzik T, Giacopuzzi M, Fiaschi A (2001) Intravenous clomipramine decreases excitability of human motor cortex. A study with paired magnetic stimulation. Neurol Sci 184:27–32

    Article  CAS  Google Scholar 

  • Masur H, Papke K, Oberwittler C (1993) Suppression of visual perception by transcranial magnetic stimulation — experimental findings in healthy subjects and patients with optic neuritis. Electroencephalogr Clin Neurophysiol 86:259–267

    Article  PubMed  CAS  Google Scholar 

  • Meyer BU, Diehl R, Steinmetz H, Britton TC, Benecke R (1991) Magnetic stimuli applied over motor and visual cortex: influence of coil position and field polarity on motor responses, phosphenes, and eye movements. Electroencephalogr Clin Neurophysiol Suppl 43:121–134

    PubMed  CAS  Google Scholar 

  • Michelucci R, Valzania F, Passarelli D, Santangelo M, Rizzi R, Buzzi AM, Tempestini A, Tassinari CA (1994) Rapid-rate transcranial magnetic stimulation and hemispheric language dominance: usefulness and safety in epilepsy. Neurology 44:1697–1700

    Article  PubMed  CAS  Google Scholar 

  • Modugno N, Nakamura Y, MacKinnon CD, Filipovic SR, Bestmann S, Berardelli A, Rothwell JC (2001) Motor cortex excitability following short trains of repetitive magnetic stimuli. Exp Brain Res 140:453–459

    Article  PubMed  CAS  Google Scholar 

  • Mosimann UP, Rihs TA, Engeler J, Fisch H, Schlaepfer TE (2000) Mood effects of repetitive transcranial magnetic stimulation of left prefrontal cortex in healthy volunteers. Psychiatry Res 94:251–256

    Article  PubMed  CAS  Google Scholar 

  • Mottaghy FM, Hungs M, Brugmann M, Sparing R, Boroojerdi B, Foltys H, Huber W, Topper R (1999) Facilitation of picture naming after repetitive transcranial magnetic stimulation. Neurology 53:1806–1812

    Article  PubMed  CAS  Google Scholar 

  • Pantev C, Engelien A, Candia V, Elbert T (2001) Representational cortex in musicians. Plastic alterations in response to musical practice. Ann N Y Acad Sci 930:300–314

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Leone A, Gates JR, Dhuna A (1991) Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology 41:697–702

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Leone A, Hallett M (1994) Induction of errors in a delayed response task by repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex. Neuroreport 5:2517–2520

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Leone A, Wassermann EM, Sadato N, Hallett M (1995) The role of reading activity on the modulation of motor cortical outputs to the reading hand in Braille readers. Ann Neurol 38:910–915

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Leone A, Peris M, Tormos JM, Pascual AP, Catala MD (1996 a) Reorganization of human cortical motor output maps following traumatic forearm amputation. Neuroreport 7:2068–2070

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Leone A, Catala MD, Pascual-Leone PA (1996b) Lateralized effect of rapid-rate transcranial magnetic stimulation of the prefrontal cortex on mood. Neurology 46:499–502

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Leone A, Tormos JM, Keenan J, Tarazona F, Canete C, Catala MD (1998) Study and modulation of human cortical excitability with transcranial magnetic stimulation. J Clin Neurophysiol 15:333–343

    Article  PubMed  CAS  Google Scholar 

  • Pearce AJ, Thickbroom GW, Byrnes ML, Mastaglia FL (2000) Functional reorganisation of the corticomotor projection to the hand in skilled racquet players. Exp Brain Res 130:238–243

    Article  PubMed  CAS  Google Scholar 

  • Plewnia C, Bartels M, Cohen LG, Gerloff C (2001) Noradrenergic modulation of human cortex excitability by the presynaptic alpha(2)-antagonist yohimbine. Neurosci Lett 307:41–44

    Article  PubMed  CAS  Google Scholar 

  • Plewnia C, Hoppe J, Hiemke C, Bartels M, Cohen LG, Gerloff C (2002) Enhancement of human cortico-motoneuronal excitability by the selective norepinephrine reup-take inhibitor reboxetine. Neurosci Lett 330:231–234

    Article  PubMed  CAS  Google Scholar 

  • Puri BK, Davey NJ, Ellaway PH, Lewis SW (1996) An investigation of motor function in schizophrenia using transcranial magnetic stimulation of the motor cortex. Br J Psychiatry 169:690–695

    Article  PubMed  CAS  Google Scholar 

  • Rauschecker JP (1999) Auditory cortical plasticity: a comparison with other sensory systems. Trends Neurosci 22:74–80

    Article  PubMed  CAS  Google Scholar 

  • Rizzo V, Quartarone A, Bagnato S, Battaglia F, Majorana G, Girlanda P (2001) Modification of cortical excitability induced by gabapentin: a study by transcranial magnetic stimulation. Neurol Sci 22:229–232

    Article  PubMed  CAS  Google Scholar 

  • Romero JR, Anschel D, Sparing R, Gangitano M, Pascual-Leone A (2002) Subthreshold low frequency repetitive transcranial magnetic stimulation selectively decreases facilitation in the motor cortex. Clin Neurophysiol 113:101–107

    Article  PubMed  Google Scholar 

  • Schwenkreis P, Witscher K, Janssen F, Addo A, Dertwinkel R, Zenz M, Malin JP, Te-genthoff M (1999) Influence of the N-methyl-D-aspartate antagonist memantine on human motor cortex excitability. Neurosci Lett 270:137–140

    Article  PubMed  CAS  Google Scholar 

  • Siebner HR, Tormos JM, Ceballos-Baumann AO, Auer C, Catala MD, Conrad B, Pascual-Leone A (1999) Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer’s cramp. Neurology 52:529–537

    Article  PubMed  CAS  Google Scholar 

  • Smith MJ, Keel JC, Greenberg BD, Adams LF, Schmidt PJ, Rubinow DA, Wassermann EM (1999) Menstrual cycle effects on cortical excitability. Neurology 53:2069–2072

    Article  PubMed  CAS  Google Scholar 

  • Sohn YH, Kaelin-Lang A, Yung HY, Hallett M (2001) Effect of levetiracetam on human corticospinal excitability. Neurology 57:858–863

    Article  PubMed  CAS  Google Scholar 

  • Sparing R, Mottaghy FM, Hungs M, Brugmann M, Foltys H, Huber W, Topper R (2001) Repetitive transcranial magnetic stimulation effects on language function depend on the stimulation parameters. J Clin Neurophysiol 18:326–330

    Article  PubMed  CAS  Google Scholar 

  • Stalder S, Rosier KM, Nirkko AC, Hess CW (1995) Magnetic stimulation of the human brain during phasic and tonic REM sleep: recordings from distal and proximal muscles. J Sleep Res 4:65–70

    Article  PubMed  Google Scholar 

  • Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123 Pt 3:572–584

    Google Scholar 

  • Stewart LM, Battelli L, Walsh V, Cowey A (1999) Motion perception and perceptual learning: a magnetic stimulation study. J Electroenc Clin Neurophys 51:334–350

    CAS  Google Scholar 

  • Stewart L, Walsh V, Frith U, Rothwell JC (2001a) TMS produces two dissociable types of speech disruption. Neuroimage 13:472–478

    Article  PubMed  CAS  Google Scholar 

  • Stewart L, Walsh V, Frith U, Rothwell J (2001b) Transcranial magnetic stimulation produces speech arrest but not song arrest. Ann N Y Acad Sci 930:433–435

    Article  PubMed  CAS  Google Scholar 

  • Stewart L, Meyer B, Frith U, Rothwell J (2002) Left posterior BA37 is involved in object recognition: a TMS study. Neuropsychologia 39:1–6

    Article  Google Scholar 

  • Topper R, Mottaghy FM, Brugmann M, Noth J, Huber W (1998) Facilitation of picture naming by focal transcranial magnetic stimulation of Wernicke’s area. Exp Brain Res 121:371–378

    Article  PubMed  CAS  Google Scholar 

  • Tormos JM, Canete C, Tarazona F, Catala MD, Pascual-Leone PA, Pascual-Leone A (1997) Lateralized effects of self-induced sadness and happiness on corticospinal excitability. Neurology 49:487–491

    Article  PubMed  CAS  Google Scholar 

  • Wassermann EM, Blaxton TA, Hoffman EA, Berry CD, Oletsky H, Pascual-Leone A, Theodore WH (1999) Repetitive transcranial magnetic stimulation of the dominant hemisphere can disrupt visual naming in temporal lobe epilepsy patients. Neuropsychologia 37:537–544

    Article  PubMed  CAS  Google Scholar 

  • Wassermann EM, Greenberg BD, Nguyen MB, Murphy DL (2001) Motor cortex excitability correlates with an anxiety-related personality trait. Biol Psychiatry 50:377–382

    Article  PubMed  CAS  Google Scholar 

  • Werhahn KJ, Förderreuther S, Straube A (1998) Effects of the serotonin1B/1D receptor agonist zolmitriptan on motor cortical excitability in humans. Neurology 51:896–898

    Article  PubMed  CAS  Google Scholar 

  • Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J (1999) Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol 517:591–597

    Article  PubMed  CAS  Google Scholar 

  • Wohlfarth K, Schneider U, Haacker T, Schubert M, Schulze-Bonhage A, Zedler M, Emrich HM, Dengler R, Rollnik JD (2000) Acamprosate reduces motor cortex excitability determined by transcranial magnetic stimulation. Neuropsychobiology 42:183–185

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U, Lönnecker S, Paulus W (1995) Inhibition of human motor cortex by ethanol. A transcranial magnetic stimulation study. Brain 118:1437–1446

    Article  PubMed  Google Scholar 

  • Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996 a) Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol 40:367–378

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U, Lönnecker S, Steinhoff BJ, Paulus W (1996 b) The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res 109:127–135

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U, Bruns D, Paulus W (1996 c) Enhancement of human motor cortex inhibition by the dopamine receptor agonist pergolide: evidence from transcranial magnetic stimulation. Neurosci Lett 208:187–190

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U, Tergau F, Bruns D, Baudewig J, Paulus W (1997) Changes in human motor cortex excitability induced by dopaminergic and anti-dopaminergic drugs. Electroenc Clin Neurophys 105:430–437

    Article  CAS  Google Scholar 

  • Ziemann U, Hallett M, Cohen LG (1998 a) Mechanisms of deafferentation-induced plasticity in human motor cortex. J Neurosci 18:7000–7007

    PubMed  CAS  Google Scholar 

  • Ziemann U, Chen R, Cohen LG, Hallett M (1998b) Dextromethorphan decreases the excitability of the human motor cortex. Neurology 51:1320–1324

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U (2001) Transkranielle Magnetstimulation: Neue Einsatzmöglichkeiten zur Messung kortikaler und kortikospinaler Erregbarkeit. Akt Neurol 28:249–264

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plewnia, C. (2003). Transkranielle Magnetstimulation in der neuropsychiatrischen Forschung. In: Eschweiler, G.W., Wild, B., Bartels, M. (eds) Elektromagnetische Therapien in der Psychiatrie. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57370-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57370-5_19

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-63248-8

  • Online ISBN: 978-3-642-57370-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics