Skip to main content

Prädiktoren für den Erfolg einer Elektrokrampftherapie

  • Chapter
  • 86 Accesses

Zusammenfassung

Für den Erfolg einer EKT gibt es nur einige wenige klinische Prädiktoren. Bereits in den fünfziger Jahren des letzten Jahrhunderts wurden psycho-pathologische Prädiktoren untersucht. Diese sind auf heutige Verhältnisse nur schwer übertragbar. Es werden hier nur Arbeiten aus den 15 letzten Jahren berücksichtigt, da sie die modernen Klassifikationssysteme DSM-III-R DSM-IV und ICD-9 bzw. ICD-10 verwenden und die Kurzimpulstechnik und nicht die Sinuswellentechnik nutzt. Der melancholische Subtyp der Depression weist wahrscheinlich eine etwas bessere Responderquote auf (zur Übersicht Abrams 1997; APA u. Weiner 2001) als der depressive Typ ohne melancholische oder somatische Symptome. Besonders erfolgreich ist die EKT bei Patienten mit psychomotorischer Verlangsamung (Sobin et al. 1996; Hickie et al. 1990a; Hickie et al. 1996b). Außerdem besteht weitreichender Konsens, dass Patienten mit psychotischer Depression besonders von der EKT profitieren (APA u. Weiner 2001; Sobin et al. 1996; Pande et al. 1990; Parker et al. 1992), sie sind zusätzlich stark suizidgefährdet (APA u. Weiner 2001; Roose et al. 1983).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abrams R (1997) Electroconvulsive therapy, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Agelink MW, Majewski T, Wurthmann C, Lukas K, Ullrich H, Linka T, Klieser E (2001) Effects of newer atypical antipsychotics on autonomic neurocardiac function: a comparison between amisulpride, olanzapine, sertindole, and clozapine. J Clin Psychopharmacol 21:8–13

    Article  PubMed  CAS  Google Scholar 

  • APA, Weiner RD (2001) The Practice of Electroconvulsive Therapy: Recommendations for Treatment, Training and Privileging: a task force report of the American Psychiatric Association, 2nd edn. American Psychiatric Association, Washington, DC

    Google Scholar 

  • Aperia B, Thoren M, Wetterberg L (1985) Prolactin and thyrotropin in serum during electroconvulsive therapy in patients with major depressive illness. Acta Psychiatr Scand 72:302–308

    Article  PubMed  CAS  Google Scholar 

  • Berrouschot J, Rolle K, Kuhn HJ, Schneider D (1997) Serum neuron-specific enolase levels do not increase after electroconvulsive therapy. J Neurol Sci 150:173–176

    Article  PubMed  CAS  Google Scholar 

  • Bonne O, Krausz Y, Shapira B, Bocher M, Karger H, Gorfine M, Chisin R, Lerer B (1996) Increased cerebral blood flow in depressed patients responding to electro-convulsive therapy. J Nucl Med 37:1075–1080

    PubMed  CAS  Google Scholar 

  • Castro M, Elias PC, Martinelli CE, Antonini SR, Santiago L, Moreira AC (2000) Salivary cortisol as a tool for physiological studies and diagnostic strategies. Braz J Med Biol Res 33:1171–1175

    Article  PubMed  CAS  Google Scholar 

  • Chanpattana W, Chakrabhand ML (2001) Combined ECT and neuroleptic therapy in treatment-refractory schizophrenia: prediction of outcome. Psychiatry Res 105:107–115

    Article  PubMed  CAS  Google Scholar 

  • Chung KF, Wong SJ (2001) Initial seizure threshold of bilateral electroconvulsive therapy in Chinese. J ECT 17:254–258

    Article  PubMed  CAS  Google Scholar 

  • Coffey CE, Lucke J, Weiner RD, Krystal AD, Aque M (1995a) Scizure threshold in electroconvulsive therapy (ECT). II. The anticonvulsant effect of ECT. Biol Psychiatry 37:777–788

    Article  PubMed  CAS  Google Scholar 

  • Coffey CE, Lucke J, Weiner RD, Krystal AD, Aque M (1995b) Scizure threshold in electroconvulsive therapy. I. Initial seizure threshold. Biol Psychiatry 37:713–720

    Article  PubMed  CAS  Google Scholar 

  • Cooper AJ, Finlayson R, Velamoor VR, Magnus RV, Cernovsky Z (1989) Effects of ECT on prolactin, LH, FSH and testosterone in males with major depressive illness. Can J Psychiatry 34:814–817

    PubMed  CAS  Google Scholar 

  • Daly JJ, Prudic J, Devanand DP, Nobler MS, Lisanby SH, Peyser S, Roose SP, Sackeim HA (2001) ECT in bipolar and unipolar depression: differences in speed of response. Bipolar Disord 3:95–104

    Article  PubMed  CAS  Google Scholar 

  • Ende G, Braus DF, Walter S, Weber FW, Henn FA (2000) The hippocampus in patients treated with electroconvulsive therapy — A proton magnetic resonance spectroscopic imaging study. Arch Gen Psychiatry 57:937–943

    Article  PubMed  CAS  Google Scholar 

  • Eschweiler GW, Plewnia C, Batra A, Bartels M (2000) Does clinical response to repetitive prefrontal transcranial magnetic stimulation (rTMS) predict response to electroconvulsive therapy (ECT) in major depression? Can J Psychiatry 45:58–59

    Google Scholar 

  • Fleischmann A, Prolov K, Abarbanel J, Belmaker RH (1995) The effect of transcranial magnetic stimulation of rat brain on behavioral models of depression. Brain Res 699:130–132

    Article  PubMed  CAS  Google Scholar 

  • Folkerts H (1996) The ictal electroencephalogram as a marker for the efficacy of electroconvulsive therapy. Eur Arch Psychiatry Clin Neurosci 246:155–164

    Article  PubMed  CAS  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  PubMed  CAS  Google Scholar 

  • Freudenreich O, Weiner RD, McEvoy JP (1997) Clozapine-induced electroencephalogram changes as a function of clozapine serum levels. Biol Psychiatry 42:132–137

    Article  PubMed  CAS  Google Scholar 

  • Hickie I, Parsonage B, Parker G (1990a) Prediction of response to electroconvulsive therapy. Preliminary validation of a sign-based typology of depression. Br J Psychiatry 157:65–71

    Article  PubMed  CAS  Google Scholar 

  • Hickie I, Mason C, Parker G, Brodaty H (1996b) Prediction of ECT response: validation of a refined sign-based (CORE) system for defining melancholia. Br J Psychiatry 169:68–74

    Article  PubMed  CAS  Google Scholar 

  • Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsycho-pharmacology 23:477–501

    Article  CAS  Google Scholar 

  • Kronfol Z, Hamdan AG, Goel K, Hill EM (1991) Effects of single and repeated electroconvulsive therapy sessions on plasma ACTH, prolactin, growth hormone and cortisol concentrations. Psychoneuroendocrinology 16:345–352

    Article  PubMed  CAS  Google Scholar 

  • Krystal AD, Weiner RD, Coffey CE (1995) The ictal EEG as a marker of adequate stimulus intensity with unilateral ECT. J Neuropsychiatry Clin Neurosci 7:295–303

    PubMed  CAS  Google Scholar 

  • Krystal AD, Weiner RD, Gassert D, McCall WV, Coffey CE, Sibert T, Holsinger T (1996) The relative ability of three ictal EEG frequency bands to differentiate ECT seizures on the basis of electrode placement, stimulus intensity, and therapeutic response. Convuls Ther 12:13–24

    PubMed  CAS  Google Scholar 

  • Krystal AD, Zaidman C, Greenside HS, Weiner RD, Coffey CE (1997) The largest Lyapunov exponent of the EEG during ECT seizures as a measure of ECT seizure adequacy. Electroencephalogr Clin Neurophysiol 103:599–606

    Article  PubMed  CAS  Google Scholar 

  • Krystal AD, Holsinger T, Weiner RD, Coffey CE (2000a) Prediction of the utility of a switch from unilateral to bilateral ECT in the elderly using treatment 2 ictal EEG indices. J ECT 16:327–337

    Article  PubMed  CAS  Google Scholar 

  • Krystal AD, Weiner RD, Lindahl V, Massie R (2000 b) The development and retrospective testing of an electroencephalographic seizure quality-based stimulus dosing paradigm with ECT. J ECT 16:338–349

    Article  PubMed  CAS  Google Scholar 

  • Krystal AD, West M, Prado R, Greenside H, Zoldi S, Weiner RD (2000) EEG effects of ECT: Implications for rTMS. Depress Anxiety 12:157–165

    Article  PubMed  CAS  Google Scholar 

  • Lisanby SH, Devanand DP, Prudic J, Pierson D, Nobler MS, Fitzsimons L, Sackeim HA (1998) Prolactin response to electroconvulsive therapy: effects of electrode placement and stimulus dosage. Biol Psychiatry 43:146–155

    Article  PubMed  CAS  Google Scholar 

  • Markianos M, Lykouras L, Stefanis C (1996) Prolactin and TSH responses to TRH and to ECT in pre-and postmenopausal women with major depression. Biol Psychiatry 40:403–406

    Article  PubMed  CAS  Google Scholar 

  • McCall WV, Weiner RD, Carroll BJ, Shelp FE, Ritchie JC, Austin S, Norris J (1996) Serum prolactin, electrode placement, and the convulsive threshold during ECT. Convuls Ther 12:81–85

    PubMed  CAS  Google Scholar 

  • Motreja S, Subbakrishna DK, Subhash MN, Gangadhar BN, Janakiramaiah N, Para-meshwara G (1997) Gender but not stimulus parameters influence prolactin response to electroconvulsive therapy. Psychoneuroendocrinology 22:337–348

    Article  PubMed  CAS  Google Scholar 

  • Neylan TC, Canick JD, Hall SE, Reus VI, Sapolsky RM, Wolkowitz OM (2001) Cortisol levels predict cognitive impairment induced by electroconvulsive therapy. Biol Psychiatry 50:331–336

    Article  PubMed  CAS  Google Scholar 

  • Nobler MS, Sackeim HA, Solomou M, Luber B, Devanand DP, Prudic J (1993) EEG manifestations during ECT: effects of electrode placement and stimulus intensity. Biol Psychiatry 34:321–330

    Article  PubMed  CAS  Google Scholar 

  • Nobler MS, Sackeim HA, Prohovnik I, Moeller JR, Mukherjee S, Schnur DB, Prudic J, Devanand DP (1994) Regional cerebral blood flow in mood disorders, III. Treatment and clinical response. Arch Gen Psychiatry 51:884–897

    Article  PubMed  CAS  Google Scholar 

  • Nobler MS, Luber B, Moeller JR, Katzman GP, Prudic J, Devanand DP, Dichter GS, Sackeim HA (2000) Quantitative EEG during seizures induced by electroconvulsive therapy: relations to treatment modality and clinical features. I. Global analyses. J ECT 16:211–228

    Article  PubMed  CAS  Google Scholar 

  • Nobler MS, Oquendo MA, Kegeles LS, Malone KM, Campbell CC, Sackeim HA, Mann JJ (2001) Decreased regional brain metabolism after ect. Am J Psychiatry 158:305–308

    Article  PubMed  CAS  Google Scholar 

  • Pande AC, Grunhaus LJ, Haskett RF, Greden JF (1990) Electroconvulsive therapy in delusional and non-delusional depressive disorder. J Affect Disord 19:215–219

    Article  PubMed  CAS  Google Scholar 

  • Parker G, Roy K, Hadzi-Pavlovic D, Pedic F (1992) Psychotic (delusional) depression: a meta-analysis of physical treatments. J Affect Disord 24:17–24

    Article  PubMed  CAS  Google Scholar 

  • Post RM, Kimbrell TA, McCann U, Dunn RT, George MS, Weiss SR (1997) [Are convulsions necessary for the antidepressive effect of electroconvulsive therapy: outcome of repeated transcranial magnetic stimulation] Les convulsions sont-elles necessaires aux effets antidepresseurs de la sismotherapie: consequences d’une stimulation magnetique transcranienne repetee (SMTr). Encephale 23 Spec No 3:27–35

    Google Scholar 

  • Prudic J, Haskett RF, Mulsant B, Malone KM, Pettinati HM, Stephens S, Greenberg R, Rifas SL, Sackeim HA (1996) Resistance to antidepressant medications and short-term clinical response to ECT. Am J Psychiatry 153:985–992

    PubMed  CAS  Google Scholar 

  • Roose SP, Glassman AH, Walsh BT, Woodring S, Vital-Herne J (1983) Depression, delusions, and suicide. Am J Psychiatry 140:1159–1162

    PubMed  CAS  Google Scholar 

  • Sackeim HA (1999) The anticonvulsant hypothesis of the mechanisms of action of ECT: current status. J ECT 15:5–26

    PubMed  CAS  Google Scholar 

  • Sackeim HA (2001) The definition and meaning of treatment-resistant depression. J Clin Psychiatry 62,suppl 16:10–17

    PubMed  CAS  Google Scholar 

  • Sackeim HA, Decina P, Prohovnik I, Malitz S, Resor SR (1983) Anticonvulsant and antidepressant properties of electroconvulsive therapy: a proposed mechanism of action. Biol Psychiatry 18:1301–1310

    PubMed  CAS  Google Scholar 

  • Sackeim HA, Portnoy S, Neeley P (1986) Cognitive consequences of low-dosage electroconvulsive therapy. Ann N Y Acad Sci 462:326–340

    Article  PubMed  CAS  Google Scholar 

  • Sackeim HA, Luber B, Katzman GP, Moeller JR, Prudic J, Devanand DP, Nobler MS (1996) The effects of electroconvulsive therapy on quantitative electroencephalograms. Relationship to clinical outcome [see comments]. Arch Gen Psychiatry 53:814–824

    Article  PubMed  CAS  Google Scholar 

  • Sackeim HA, Luber B, Moeller JR, Prudic J, Devanand DP, Nobler MS (2000) Electro-physiological correlates of the adverse cognitive effects of electroconvulsive therapy. J ECT 16:110–120

    Article  PubMed  CAS  Google Scholar 

  • Sackeim HA, Prudic J, Devanand DP, Nobler MS, Lisanby SH, Peyser S, Fitzsimons L, Moody BJ, Clark J (2000) A prospective, randomized, double-blind comparison of bilateral and right unilateral electroconvulsive therapy at different stimulus intensities [see comments]. Arch Gen Psychiatry 57:425–434

    Article  PubMed  CAS  Google Scholar 

  • Sermet E, Grégoire MC, Galy G, Lavenne F, Pierre C, Veyre L, Lebars D, Cinotti L, Co-mar D, Dalery J, Bobillier P (1998) Paradoxical metabolic response of the human brain to a single electroconvulsive shock. Neurosci Lett 254:41–44

    Article  PubMed  CAS  Google Scholar 

  • Shapira B, Lidsky D, Gorfine M, Lerer B (1996) Electroconvulsive therapy and resistant depression: clinical implications of seizure threshold. J Clin Psychiatry 57:32–38

    Article  PubMed  CAS  Google Scholar 

  • Sobin C, Prudic J, Devanand DP, Nobler MS, Sackeim HA (1996) Who responds to electroconvulsive therapy?. A comparison of effective and ineffective forms of treatment. Br J Psychiatry 169:322–328

    Article  PubMed  CAS  Google Scholar 

  • Sperling W, Martus P, Alschbach M (2000) Evaluation of neuronal effects of electroconvulsive therapy by magnetoencephalography (MEG). Prog Neuropsychopharmacol Biol Psychiatry 24:1339–1354

    Article  PubMed  CAS  Google Scholar 

  • Weiner RD, Rogers H, Davidson J (1986a) Effects of electroconvulsive therapy upon electrical brain activity. Ann N Y Acad Sci 462:270–281

    Article  PubMed  CAS  Google Scholar 

  • Weiner RD, Rogers H, Davidson J (1986b) Effects of electroconvulsive therapy on cognitive side effects. Ann N Y Acad Sci 462:315–325

    Article  PubMed  CAS  Google Scholar 

  • Weiner RD, Coffey CE, Krystal AD (1991) The monitoring and management of electrically induced seizures. Psychiatr Clin North Am 14:845–869

    PubMed  CAS  Google Scholar 

  • Zobel AW, Yassouridis A, Frieboes RM, Holsboer F (1999) Prediction of medium-term outcome by cortisol response to the combined dexamethasone-CRH test in patients with remitted depression. Am J Psychiatry 156:949–951

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eschweiler, G.W. (2003). Prädiktoren für den Erfolg einer Elektrokrampftherapie. In: Eschweiler, G.W., Wild, B., Bartels, M. (eds) Elektromagnetische Therapien in der Psychiatrie. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57370-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57370-5_11

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-63248-8

  • Online ISBN: 978-3-642-57370-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics