Skip to main content

Differenzierung embryonaler Stammzellen — neue Perspektiven für Zell- und Gewebeersatz

  • Chapter
Tissue Engineering
  • 186 Accesses

Zusammenfassung

Eine Alternative zu Organtransplantationen und eine Methode, defektes Gewebe zu ersetzen, könnte die Zelltherapie darstellen. Dabei wird ein defektes Gewebe durch Implantation intakter Zellen bzw. gewebeähnlicher Zell-verbände oder -komposite ersetzt. Eine Voraussetzung dafür ist, eine ausreichende Menge von Zellen zu generieren, die die spezifischen Eigenschaften des Gewebes besitzen, die also die physiologischen Leistungen der defekten Zellen ersetzen können. Man kann so genannte Primärkulturen anlegen, indem man eine Biopsie von gesundem Gewebe oder einem intakten Teil eines betroffenen Gewebes entnimmt, enzymatisch in Einzelzellen dissoziiert und in der Zellkultur, also in vitro, vermehrt. Die Zellen können dann wieder in das defekte Gewebe implantiert werden. Diese Methode hat allerdings Limitationen, da differenzierte Zellen nur eine begrenzte Teilungsfähigkeit besitzen und in Kultur oft ihre spezifischen Eigenschaften verlieren. Die Verwendung von Stammzellen zur Generierung differenzierter Zellen, die sich zur Transplantation eignen, ist insbesondere seit der Etablierung humaner Linien embryonaler Stammzellen (ES-Zellen) in den Mittelpunkt des Interesses gerückt. Eine zentrale Frage besteht darin, ob humane ES-Zellen für das Tissue engineering, also die Herstellung von Gewebeersatz, geeignet sind. Das Wissen über humane ES-Zellen ist bislang sehr begrenzt. Mehr Informationen liegen über die ES-Zellen der Maus vor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, Tzukerman M (2001) Insulin production by human embryonic stem cells. Diabetes 50:1691–1697

    Article  PubMed  CAS  Google Scholar 

  2. Bagutti C, Wobus AM, Fässler R, Watt FM (1996) Differentiation of embryonal stem cells into keratinocytes: comparison of wild-type and beta 1 integrin-deficient cells. Dev Biol 179:184–196

    Article  PubMed  CAS  Google Scholar 

  3. Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI (1995) Embryonic stem cells express neuronal properties in vitro. Dev Biol 168:342–357

    Article  PubMed  CAS  Google Scholar 

  4. Bober E, Lyons GE, Braun T, Cossu G, Buckingham M, Arnold HH (1991) The muscle regulatory gene, Myf-6, has a biphasic pattern of expression during early mouse development. J Cell Biol 113:1255–1265

    Article  PubMed  CAS  Google Scholar 

  5. Bradley A, Evans M, Kaufman MH, Robertson E (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309:255–256

    Article  PubMed  CAS  Google Scholar 

  6. Braun T, Arnold HH (1994) ES-cells carrying two inactivated myf-5 alleles form skeletal muscle cells: activation of an alternative myf-5-independent differentiation pathway. Dev Biol 164:24–36

    Article  PubMed  CAS  Google Scholar 

  7. Brüstle O, Jones KN, Learish RD, Karram K, Choudhary K, Wiestler OD, Duncan ID, McKay RD (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285:754–756

    Article  PubMed  Google Scholar 

  8. Buttery LD, Bourne S, Xynos JD, Wood H, Hughes FJ, Hughes SP, Episkopou V, Polak JM (2001) Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells. Tissue Eng 7:89–99

    Article  PubMed  CAS  Google Scholar 

  9. Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–66

    Article  PubMed  CAS  Google Scholar 

  10. Dani C, Smith AG, Dessolin S, Leroy P, Staccini L, Villageois P, Darimont C, Ailhaud G (1997) Differentiation of embryonic stem cells into adipocytes in vitro. J Cell Sci 110:1279–1285

    PubMed  CAS  Google Scholar 

  11. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87: 27–45

    PubMed  CAS  Google Scholar 

  12. Drab M, Haller H, Bychkov R, Erdmann B, Lindschau C, Haase H, Morano I, Luft FC, Wobus AM (1997) From totipotent embryonic stem cells to spontaneously contracting smooth muscle cells: a retinoic acid and db-cAMP in vitro differentiation model. FASEB J 11:905–915

    PubMed  CAS  Google Scholar 

  13. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  PubMed  CAS  Google Scholar 

  14. Fairchild PJ, Brook FA, Gardner RL, Graca L, Strong V, Tone Y, Tone M, Nolan KF, Waldmann H (2000) Directed differentiation of dendritic cells from mouse embryonic stem cells. Curr Biol 10:1515–1518

    Article  PubMed  CAS  Google Scholar 

  15. Fässler R, Meyer M (1995) Consequences of lack of beta 1 integrin gene expression in mice. Genes Dev 9:1896–1908

    Article  PubMed  Google Scholar 

  16. Fässler R, Rohwedel J, Maltsev V, Bloch W, Lentini S, Guan K, Gullberg D, Hescheler J, Addicks K, Wobus AM (1996) Differentiation and integrity of cardiac muscle cells are impaired in the absence of beta 1 integrin. J Cell Sci 109:2989–2999

    PubMed  Google Scholar 

  17. Fraichard A, Chassande O, Bilbaut G, Dehay C, Savatier P, Samarut J (1995) In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J Cell Sci 108:3181–3188

    PubMed  CAS  Google Scholar 

  18. Hegert C, Kramer J, Hargus G, Müller J, Kaomei G, Wobus AM, Muller PK, Rohwedel J (2001) Differentiation plasticity of chondrocytes derived from mouse embryonic stem cells. J Cell Sci 115:4617–4628

    Article  Google Scholar 

  19. Helgason CD, Sauvageau G, Lawrence HJ, Largman C, Humphries RK (1996) Overexpression of HOXB4 enhances the hematopoietic potential of embryonic stem cells differentiated in vitro. Blood 87:2740–2749

    PubMed  CAS  Google Scholar 

  20. Hinterberger TJ, Sassoon DA, Rhodes SJ, Konieczny SF (1991) Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development. Dev Biol 147:144–156

    Article  PubMed  CAS  Google Scholar 

  21. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N (2000) Differentiation of human embryonic stem cells intoembryoid bodies compromising the three embryonic germ layers. Mol Med 6: 88–95

    PubMed  CAS  Google Scholar 

  22. Johansson BM, Wiles MV (1995) Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol Cell Biol 15:141–151

    PubMed  CAS  Google Scholar 

  23. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108:407–414

    PubMed  CAS  Google Scholar 

  24. Kramer J, Hegert C, Guan K, Wobus AM, Müller PK, Rohwedel J (2000) Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech Dev 92:193–205

    Article  PubMed  CAS  Google Scholar 

  25. Kues WA, Sakmann B, Witzemann V (1995) Differential expression patterns of five acetylcholine receptor subunit genes in rat muscle during development. Eur J Neurosci 7:1376–1385

    Article  PubMed  CAS  Google Scholar 

  26. Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, Parmacek MS, Soudais C, Leiden JM (1997) GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 11:1048–1060

    Article  PubMed  CAS  Google Scholar 

  27. Levinson-Dushnik M, Benvenisty N (1997) Involvement of hepatocyte nuclear factor 3 in endoderm differentiation of embryonic stem cells. Mol Cell Biol 17: 3817–3822

    PubMed  CAS  Google Scholar 

  28. Maltsev VA, Rohwedel J, Hescheler J, Wobus AM (1993) Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech Dev 44:41–50

    Article  PubMed  CAS  Google Scholar 

  29. Maltsev VA, Wobus AM, Rohwedel J, Bader M, Hescheler J (1994) Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ Res 75:233–244

    Article  PubMed  CAS  Google Scholar 

  30. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    Article  PubMed  CAS  Google Scholar 

  31. Miller-Hance WC, LaCorbiere M, Fuller SJ, Evans SM, Lyons G, Schmidt C, Robbins J, Chien KR (1993) In vitro chamber specification during embryonic stem cell cardiogenesis. Expression of the ventricular myosin light chain-2 gene is independent of heart tube formation. J Biol Chem 268:25244–25252

    PubMed  CAS  Google Scholar 

  32. Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59:89–102

    Article  PubMed  CAS  Google Scholar 

  33. Ott MO, Bober E, Lyons G, Arnold H, Buckingham M (1991) Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development 111:1097–1107

    PubMed  CAS  Google Scholar 

  34. Prelle K, Vassiliev IM, Vassilieva SG, Wolf E, Wobus AM (1999) Establishment of pluripotent cell lines from vertebrate species - present status and future prospects. Cells Tissues Organs 165:220–236

    Article  PubMed  CAS  Google Scholar 

  35. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404

    Article  PubMed  CAS  Google Scholar 

  36. Risau W, Sariola H, Zerwes HG, Sasse J, Ekblom P, Kemler R, Doetschman T (1988) Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 102:471–478

    PubMed  CAS  Google Scholar 

  37. Robbins J, Gulick J, Sanchez A, Howles P, Doetschman T (1990) Mouse embryonic stem cells express the cardiac myosin heavy chain genes during development in vitro. J Biol Chem 265:11905–11909

    PubMed  CAS  Google Scholar 

  38. Rohwedel J, Guan K, Wobus AM (1999) Induction of cellular differentiation by retinoic acid in vitro. Cells Tissues Organs 165:190–202

    Article  PubMed  CAS  Google Scholar 

  39. Rohwedel J, Guan K, Zuschratter W, Jin S, Ahnert-Hilger G, Furst D, Fässler R, Wobus AM (1998) Loss of betal integrin function results in a retardation of myogenic, but an acceleration of neuronal differentiation of embryonic stem cells in vitro. Dev Biol 201:167–184

    Article  PubMed  CAS  Google Scholar 

  40. Rohwedel J, Horak V, Hebrok M, Fuchtbauer EM, Wobus AM (1995) M-twist expression inhibits mouse embryonic stem cell-derived myogenic differentiation in vitro. Exp Cell Res 220:92–100

    Article  PubMed  CAS  Google Scholar 

  41. Rohwedel J, Kleppisch T, Pich U, Guan K, Jin S, Zuschratter W, Hopf C, Hoch W, Hescheler J, Witzemann V, Wobus AM (1998) Formation of postsynaptic-like membranes during differentiation of embryonic stem cells in vitro. Exp Cell Res 239:214–225

    Article  PubMed  CAS  Google Scholar 

  42. Rohwedel J, Maltsev V, Bober E, Arnold HH, Hescheler J, Wobus AM (1994) Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev Biol 164:87–101

    Article  PubMed  CAS  Google Scholar 

  43. Sassoon D, Lyons G, Wright WE, Lin V, Lassar A, Weintraub H, Buckingham M (1989) Expression of two myogenic regulatory factors myogenin and MyoD1 during mouse embryogenesis. Nature 341:303–307

    Article  PubMed  CAS  Google Scholar 

  44. Schmitt RM, Bruyns E, Snodgrass HR (1991) Hematopoietic development of embryonic stem cells in vitro: cytokine and receptor gene expression. Genes Dev 5:728–740

    Article  PubMed  CAS  Google Scholar 

  45. Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N (2000) From the cover: effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 97:1130711312

    Article  PubMed  CAS  Google Scholar 

  46. Shani M, Faerman A, Emerson CP, Pearson-White S, Dekel I, Magal Y (1992) The consequences of a constitutive expression of MyoD1 in ES cells and mouse embryos. Symp Soc Exp Biol 46:19–36

    PubMed  CAS  Google Scholar 

  47. Shen MM, Leder P (1992) Leukemia inhibitory factor is expressed by the pre-implantation uterus and selectively blocks primitive ectoderm formation in vitro. Proc Natl Acad Sci USA 89:8240–8244

    Article  PubMed  CAS  Google Scholar 

  48. Simon MC, Pevny L, Wiles MV, Keller G, Costantini F, Orkin SH (1992) Rescue of erythroid development in gene targeted GATA-1-mouse embryonic stem cells. Nat Genet 1:92–98

    Article  PubMed  CAS  Google Scholar 

  49. Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F (2000) Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49:157–162

    Article  PubMed  CAS  Google Scholar 

  50. Soudais C, Bielinska M, Heikinheimo M, MacArthur CA, Narita N, Saffitz JE, Simon MC, Leiden JM, Wilson DB (1995) Targeted mutagenesis of the transcription factor GATA-4 gene in mouse embryonic stem cells disrupts visceral endoderm differentiation in vitro. Development 121:3877–3888

    PubMed  CAS  Google Scholar 

  51. Strübing C, Ahnert-Hilger G, Shan J, Wiedenmann B, Hescheler J, Wobus AM (1995) Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech Dev 53:275–287

    Article  PubMed  Google Scholar 

  52. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512

    Article  PubMed  CAS  Google Scholar 

  53. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  54. Wang R, Clark R, Bautch VL (1992) Embryonic stem cell-derived cystic embryoid bodies form vascular channels: an in vitro model of blood vessel development. Development 114:303–316

    PubMed  CAS  Google Scholar 

  55. Wiles MV, Keller G (1991) Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development 111:259–267

    PubMed  CAS  Google Scholar 

  56. Wobus AM, Wallukat G, Hescheler J (1991) Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation 48:173–182

    Article  PubMed  CAS  Google Scholar 

  57. Yamada G, Kioussi C, Schubert FR, Eto Y, Chowdhury K, Pituello F, Gruss P (1994) Regulated expression of Brachyury(T), Nkxl.1 and Pax genes in embryoid bodies. Biochem Biophys Res Commun 199:552–563

    Article  PubMed  CAS  Google Scholar 

  58. Zhou G, Lefebvre V, Zhang Z, Eberspaecher H, de Crombrugghe B (1998) Three high mobility group-like sequences within a 48-base pair enhancer of the Col2a1 gene are required for cartilage-specific expression in vivo. J Biol Chem 273:14989–14997

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rohwedel, J. (2003). Differenzierung embryonaler Stammzellen — neue Perspektiven für Zell- und Gewebeersatz. In: Bruns, J. (eds) Tissue Engineering. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57353-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57353-8_21

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-63243-3

  • Online ISBN: 978-3-642-57353-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics