Control Charts for the Median and Interquartile Range

  • A. J. Stromberg
  • W. Griffith
  • M. Smith
Conference paper


This paper advocates the use of a new type of nonparametric control charts for the median and interquartile range based on jackknifed histograms.


Sign Test Control Chart Asymptotic Normality Control Limit Sample Median 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R.W. Amin, M.R. Reynolds, and S. Bakir. Nonparametric quality control charts based on the sign statistic. Comm. Statist., Theory Meth., 24:1597–1623, 1995.MathSciNetMATHCrossRefGoogle Scholar
  2. D.L. Donoho and P.J. Huber. The notion of breakdown point. In P.J. Bickel, K.A. Doksum, and J.L. Hodges, editors, A Festschrift for Erich L. Lehmann,pages 157–184. Wadsworth, Belmont, CA, 1983.Google Scholar
  3. B. Efron. Bootstrap methods: Another look at the Jackknife. Ann. Statist., 7:1–26, 1979.MathSciNetMATHCrossRefGoogle Scholar
  4. B. Efron. The Jackknife, the Bootstrap and other resampling plans. Society for Industrial and Applied Mathematics, Philadelphia, 1982.CrossRefGoogle Scholar
  5. B. Iglewicz and D. Hoaglin. Use of boxplots for process evaluation. J. of Quality Technology, 19:180–190, 1989.Google Scholar
  6. R.Y. Liu and J. Tang. Control charts for dependent and independent measurements based on bootstrap methods. J. Am. Statist. Assoc.,91:1694–1700, 1996.MathSciNetMATHCrossRefGoogle Scholar
  7. J.S. Maritz and R.G. Jarrett. A note on estimating the variance of the sample median. J. Am. Statist. Assoc., 73:194–196, 1978.CrossRefGoogle Scholar
  8. D.M. Rocke. Robust control charts. Technometrics, 31:173–184, 1989.MathSciNetCrossRefGoogle Scholar
  9. J. Shao. The efficiency and consistency of approximations to the Jackknife variance estimators. J. Am. Statist. Assoc., 84:114–119, 1989.MATHCrossRefGoogle Scholar
  10. X.Q. Shi. Some asypmptotic results for jackknifing the sample quantiles. Unpublished manuscript, 1989.Google Scholar
  11. A.J. Stromberg. Breakdown points for covariance estimates based on resampling. J. Statist. Planning and Inf., 57:321–334, 1997.MathSciNetMATHCrossRefGoogle Scholar
  12. E.M. White and R. Schroeder. A simultaneous control chart. J. of Quality Technology, 19: 1–10,1987.Google Scholar
  13. C.F.J. Wu. Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Statist., 14:1261–1350, 1986.MathSciNetMATHCrossRefGoogle Scholar
  14. C.F.J. Wu. On the asymptotic properties of the jackknife histogram. Ann. Statist., 18:1438–1452, 1990.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • A. J. Stromberg
    • 1
  • W. Griffith
    • 1
  • M. Smith
    • 1
  1. 1.Department of StatisticsUniversity of KentuckyUSA

Personalised recommendations