Astrophysical MHD Simulation and Visualization

  • Bertil Dorch
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 13)


The combination of numerical simulations, interactive data-mining, and visualization has proven to be very powerful when attempting to understand complex astrophysical systems. The present contribution aims at illustrating this by discussing examples from numerical magneto-hydrodynamical simulations within the context of astrophysical dynamos. Two qualitatively different simulations are discussed: A study of the magnetic field topology in a kinematic dynamo model, and a model of the buoyant rise of a twisted magnetic flux rope through a stellar convection zone.


Stagnation Point Flux Tube Magnetic Field Line Convection Zone Flux Rope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. V. Archontis and S. B. F. Dorch. Numerical simulations of dynamos associated with ABC flows. In Stellar Dynamos: Nonlinearity and Chaotic Flows, volume 178 of ASP Conf. Series, pages 1–11, 1999.Google Scholar
  2. 2.
    V. Arnold and E. Korkina. The growth of a magnetic field in a steady incompressible flow. Vest. Mosk. Un. Ta. Ser. 1, Matem. Mekh.,3:43–46, 1983.Google Scholar
  3. 3.
    E. Beltrami. Opere Matematiche, volume 4. Ulrico Hoepli, Milano, 1920.Google Scholar
  4. 4.
    P. Caligari, F. Moreno-Insertis, and M. Schüssler. Emerging flux tubes in the solar convection zone I: Asymmetry, tilt, and emergence latitude. Ap.J., 441:886–902, 1995.ADSCrossRefGoogle Scholar
  5. 5.
    R. C. Canfield, H. S. Hudson, and D. E. McKenzie. Sigmoidal morphology and eruptive solar activity. Geoph. Res. Letters, 26(6):627, 1999.ADSCrossRefGoogle Scholar
  6. 6.
    F. Cattaneo, T. Chiueh, and D. Hughes. A new twist to the solar cycle. Journal of Fluid Mechanics, 219:1, 1990.ADSzbMATHCrossRefGoogle Scholar
  7. F. Cattaneo and D. Hughes. The nonlinear breakup of a magnetic layer: Instability to interchange modes. Journal of Fluid Mechanics, 1969:323–344, 1988.Google Scholar
  8. 8.
    S. Childress. New solutions of the kinematic dynamo problem. Journ. Math. Phys., 11:3063–3076, 1970.MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    S. Childress and A. Gilbert. Stretch, Twist, Fold: The Fast Dynamo. Springer-Verlag, 1995.Google Scholar
  10. 10.
    S. B. F. Dorch. The Solar Dynamo. PhD thesis, Niels Bohr Institute at Copenhagen University, 1998.Google Scholar
  11. 11.
    S. B. F. Dorch. New results on kinematic dynamo action by ABC flows. Submitted to Physica Scripta, 1999.Google Scholar
  12. 12.
    S. B. F. Dorch and Å. Nordlund. 3-D numerical simulations of buoyant magnetic flux tubes. AεA, 338:329–339, 1998.Google Scholar
  13. S. B. F. Dorch and Å. Nordlund. On the transport of magnetic fields by solar-like stratified convection. In preparation, 1999.Google Scholar
  14. 14.
    T. Emonet and F. Moreno-Insertis. Equilibrium of twisted horizontal magnetic flux tubes. Ap.J., 458:783–801, 1996.ADSCrossRefGoogle Scholar
  15. 15.
    T. Emonet and F. Moreno-Insertis. The physics of twisted magnetic tubes rising in a stratified medium: Two-dimensional results. Ap.J., 492:804–821, 1998.ADSCrossRefGoogle Scholar
  16. 16.
    Y. Fan, G. H. Fisher, and A. N. McClymont. Dynamics of emerging active region flux loops. Ap.J., 436:907–928, 1994.ADSCrossRefGoogle Scholar
  17. 17.
    B. Galanti, A. Pouquet, and P. L. Sulem. Theory of Solar and Planetary Dynamos, chapter Influence of the period of an ABC flow on its dynamo action, page 99. Cambridge University Press, 1993.Google Scholar
  18. 18.
    B. Galanti, P. L. Sulem, and A. Pouquet. Linear and non-linear dynamos associated with ABC flows. Geophy.Å Astroph. Fluid Dyn., 66:183, 1992.ADSCrossRefGoogle Scholar
  19. 19.
    D. Galloway and U. Frisch. A numerical investigation of magnetic field generation in a flow with chaotic streamlines. Geophy.Å Astroph. Fluid Dyn., 29:13, 1984.MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    D. J. Galloway and U. Frisch. Dynamo action in a family of flows with chaotic streamlines. Geophy.Å Astroph. Fluid Dyn., 36:53–83, 1986.MathSciNetADSCrossRefGoogle Scholar
  21. D. J. Galloway and N. R. O’Brian. Solar and Planetary Dynamos, chapter Numerical calculations of dynamos for ABC and related flows, pages 105–113. Cambridge University Press, 1992.Google Scholar
  22. 22.
    K. Galsgaard and Å. Nordlund. The heating and activity of the solar corona II: Kink instability in a flux tube. Journ. Geophysical Res., 102:219–235, 1997.ADSCrossRefGoogle Scholar
  23. 23.
    F. Moreno-Insertis. Nonlinear time-evolution of kink-unstable magnetic flux tubes in the convective zone of the sun. AεA, 166:291–305, 1986.zbMATHGoogle Scholar
  24. F. Moreno-Insertis and T. Emonet. The rise of twisted magnetic tubes in a stratified medium. Ap. J., 472:L53—L57, 1996.Google Scholar
  25. Å. Nordlund, K. Galsgaard, and R. F. Stein. Magnetoconvection and magnetoturbulence. In Solar Surface Magnetism, volume 433 of NATO ASI Series, pages 471–498, 1994.Google Scholar
  26. 26.
    Ö. E. Rögnvaldsson. Magnetized Cooling Flows. PhD thesis, Niels Bohr Institute at Copenhagen University, 1999.Google Scholar
  27. 27.
    M. Schüssler. Magnetic buoyancy revisited: Analytical and numerical results for rising flux tubes. AεA, 71:79–91, 1979.Google Scholar
  28. 28.
    H. C. Spruit. Motion of magnetic flux tubes in the solar convection zone and chromosphere. AεA, 98:155–160, 1981.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Bertil Dorch
    • 1
  1. 1.Stockholm ObservatoryThe Royal Swedish Academy of SciencesSaltsjöbadenSweden

Personalised recommendations