Skip to main content

On the Mathematical Theory of Fluid Dynamic Limits to Conservation Laws

  • Chapter
Advances in Mathematical Fluid Mechanics

Abstract

These lectures discuss topics in the theory of hyperbolic systems of conservation laws focusing on the mathematical theory of fluid-dynamic limits. First, we discuss the emergence of the compressible Euler equations for an ideal gas in the fluid-dynamic limit of the Boltzmann equation or of the BGK model. Then we survey the current state of the mathematical theory of fluid-dynamic limits for BGK systems and for discrete velocity models of relaxation type. This is done for the case that the limit is a scalar conservation law or a system of two equations.

In memory of John A. Nohel

Research partially supported dy the TMR porject HCL #ERBFNRXCT960033 and the National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Aregba-Driollet and R. Natalini: Discrete kinetic schemes for multidimensional conservation laws, (1998), (preprint).

    Google Scholar 

  2. Y. Brenier: Résolution d’equations d’ évolution quasilinéaires en dimension N d’espace à l’aide déquations linéaires en dimension N + 1, J. Differential Equations 50 (1983), 375–390.

    Article  MathSciNet  MATH  Google Scholar 

  3. Y. Brenier, L. Corrias: A kinetic formulation for multi-branch entropy solutions of scalar conservation laws, Ann. Inst. H. Poincaré Anal. Non Lineaire 15 (1998), 1450–1461.

    MathSciNet  Google Scholar 

  4. F. Bouchut: Construction of BGK models with a family of kinetic entropies for a given system of conservation laws, J. Statist. Phys. 95 (1999), 113–170.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Bouchut, F.R. Guarguaglini and R. Natalini: Diffusive BGK approximations for nonlinear multidimensional parabolic equations, to appear in Indiana Univ. Math. J.

    Google Scholar 

  6. C. Cercignani, R. Illner and M. Pulvirenti: The mathematical theory of dilute gases, Applied Mathematical Sciences, 106. Springer, New-York, 1994.

    Google Scholar 

  7. G.-Q. Chen and T.-P. Liu: Zero relaxation and dissipation limits for hyperbolic conservation laws. Comm. Pure Appl. Math. 46 (1993), 755–781.

    Article  MathSciNet  MATH  Google Scholar 

  8. G.-Q. Chen, CD. Levermore and T.-P. Liu: Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math. 47 (1994), 787–830.

    Article  MathSciNet  MATH  Google Scholar 

  9. G.-Q. Chen and CM. Dafermos: Global solutions in L for a system of conservation laws of viscoelastic materials with memory. J. Partial Differential Equations 10 (1997), 369–383.

    MathSciNet  MATH  Google Scholar 

  10. C.M. Dafermos: Solutions in L for a conservation law with memory. Analyse mathematique et applications, 117-128, Gauthier-Villars, Paris, 1988.

    Google Scholar 

  11. R. DiPerna: Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Analysis 82 (1983), 27–70.

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Faciu and M. Mihailescu-Suliciu: The energy in one-dimensional rate-type semilinear viscoelasticity, Int. J. Solids Structures 23 (1987), 1505–1520.

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Giga and T. Miyakawa: A kinetic construction of global solutions of first-order quasilinear equations, Duke Math. J 50 (1983), 505–515.

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Golse: From kinetic to macroscopic models, (1998), (preprint).

    Google Scholar 

  15. L. Gosse and A. Tzavaras: Convergence of relaxation schemes to the equations of elastodynamics, to appear in Math. Comp.

    Google Scholar 

  16. F. James, Y.-J. Peng and B. Perthame: Kinetic formulation for chromatography and some other hyperbolic systems. J. Math. Pures et Appl. 74 (1995), 367–385.

    Google Scholar 

  17. S. Jin and Z. Xin: The relaxing schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math. 48 (1995), 235–277.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Katsoulakis and A.E. Tzavaras: Contractive relaxation systems and the scalar multidimensional conservation law, Comm. Partial Differential Equations 22 (1997), 195–233.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Katsoulakis and A.E. Tzavaras: Multiscale analysis for interacting particles: relaxation systems and scalar conservation laws, J. Statist. Phys. 96 (1999), 715–763.

    Article  MathSciNet  MATH  Google Scholar 

  20. S.N. Kruzhkov: First order quasilinear equations with severla independent variables, Math. USSR Sbornik 10 (1970), 217–243.

    Article  MATH  Google Scholar 

  21. E.M. Lifshitz and L.P. Pitaevskii: Physical Kinetics, Landau and Lifshitz: Course of Theoretical Physics, Vol. 10, Pergamon, 1981.

    Google Scholar 

  22. P.L. Lions, B. Perthame and E. Tadmor: A kinetic formulation of scalar multidimensional conservation laws, J. A MS 7 (1994), 169–191.

    MathSciNet  MATH  Google Scholar 

  23. P.L. Lions, B. Perthame and E. Tadmor: Kinetic formulation of the isentropic gas dynamics and p-systems, Comm. Math. Physics 163 (1994), 415–431.

    Article  MathSciNet  MATH  Google Scholar 

  24. P.L. Lions, B. Perthame and P.E. Souganidis: Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math. 49 (1996), 599–638.

    Google Scholar 

  25. T.-P. Liu: Hyperbolic conservation laws with relaxation, Comm. Math. Phys. 108 (1987), 153–175.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Natalini: Convergence to equilibrium for the relaxation approximations of conservation laws, Comm. Pure Appl. Math. 49 (1996), 795–823.

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Natalini: A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws. J. Differential Equations 148 (1998), 292–317.

    Article  MathSciNet  MATH  Google Scholar 

  28. J.A. Nohel, R.C. Rogers and A.E. Tzavaras: Weak solutions for a nonlinear system in viscoelasticity. Comm. Partial Differential Equations 13 (1988), 97–127.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Nouri, A. Omrane and J.P. Vila: Boundary conditions for scalar conservation laws from a kinetic point of view, to appear in J. Stat. Phys..

    Google Scholar 

  30. B. Perthame and E. Tadmor: A kinetic equation with kinetic entropy functions for scalar conservation laws, Comm. Math. Phys. 136 (1991), 501–517.

    Article  MathSciNet  MATH  Google Scholar 

  31. B. Perthame and M. Pulvirenti: On some large systems of random particles which approximate scalar conservation laws, Asymptotic Anal. 10 (1995), 263–278.

    MathSciNet  MATH  Google Scholar 

  32. B. Perthame: Introduction to the collision models in Boltzmann’s theory, (1995) (preprint).

    Google Scholar 

  33. B. Perthame: Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure, J. Math. Pures et Appl. (to appear).

    Google Scholar 

  34. B. Perthame and A.E. Tzavaras: Kinetic formulation for systems of two conservation laws and elastodynamics, (preprint).

    Google Scholar 

  35. M. Renardy, W.J. Hrusa and J.A. Nohel: Mathematical problems in viscoelasticity. Pitman Monographs and Surveys in Pure and Applied Mathematics, 35, Longman Sei. and Techn., New York, 1987.

    Google Scholar 

  36. D. Serre and J. Shearer: Convergence with physical viscosity for nonlinear elasticity, (1993) (unpublished manuscript).

    Google Scholar 

  37. D. Serre: Relaxation semi-linéaire et cinétique des systèmes de lois de conservation, to appear in Ann. Inst. H. Poincaré, Anal. Non Linèaire.

    Google Scholar 

  38. J. Shearer: Global existence and compactness in L p for the quasi-linear wave equation. Comm. Partial Differential Equations 19 (1994), 1829–1877.

    MathSciNet  MATH  Google Scholar 

  39. M. Slemrod and A.E. Tzavaras: Self-similar fluid dynamic limits for the Broad-well system. Arch. Rational Mech. Anal. 122 (1993), 353–392.

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Tveito and R. Winther: On the rate of convergence to equilibrium for a system of conservation laws including a relaxation term. SIAM J. Math. Anal. 28 (1997), 136–161.

    Article  MathSciNet  MATH  Google Scholar 

  41. A.E. Tzavaras: Viscosity and relaxation approximations for hyperbolic systems of conservation laws. In An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, D. Kroener, M. Ohlberger and C. Rohde, eds, Lecture Notes in Comp. Science and Engin., Vol. 5, Springer, Berlin, 1998, pp. 73–122.

    Google Scholar 

  42. A.E. Tzavaras: Materials with internal variables and relaxation to conservation laws, Arch. Rational Mech. Anal. 146 (1999), 129–155.

    Article  MathSciNet  MATH  Google Scholar 

  43. G.B. Whitham: Linear and nonlinear waves. Pure and Applied Mathematics, Wiley-Interscience, New York, 1974.

    Google Scholar 

  44. W.-A. Yong: Singular perturbations of first-order hyperbolic systems with stiff source terms. J. Diff. Equations 155 (1999), 89–132.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tzavaras, A.E. (2000). On the Mathematical Theory of Fluid Dynamic Limits to Conservation Laws. In: Málek, J., Nečas, J., Rokyta, M. (eds) Advances in Mathematical Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57308-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57308-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67786-4

  • Online ISBN: 978-3-642-57308-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics