Advertisement

Full molecular quantum similarity matrices as QSAR descriptors

  • Ramon Carbó-Dorca
  • David Robert
  • Lluís Amat
  • Xavier Gironés
  • Emili Besalú
Part of the Lecture Notes in Chemistry book series (LNC, volume 73)

Abstract

In this chapter, a scheme of the application of molecular quantum similarity matrices to describe a molecular property of interest is exposed. Quantum similarity matrices need to be conveniently transformed when employed as descriptor source in QSAR procedures. In order to describe the usual transformations, dimensionality reduction and variable selection techniques will be discussed. Combination of different quantum similarity matrices, constituting the Tuned QSAR model, is also discussed. Since the only relevant test for the procedure protocol is its application on real cases, quantum similarity matrices will be used to study three different molecular sets in order to provide the reader with reliable quantitative equations for activity prediction.

Keywords

Randomization Test QSAR Model Indole Derivative Classical Scaling Quantum Similarity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 172.
    Van de Waterbeemd H (1996) Chemometric Methods used in Drug Discovery. In: Van de Waterbeemd H (ed) Structure-Property Correlations in Drug Design. Academic Press, San DiegoGoogle Scholar
  2. 173.
    Cuadras CM, Fortiana J (2000) The Importance of Geometry in Multivariate Analysis and some Applications. In: Rao CR, Szekely GJ (eds) Statistics for the 21st Century, Marcel Dekker, New York, pp 93–108Google Scholar
  3. 174.
    Torgerson WS (1952) Multidimensional scaling: I. Theory and method. Psychometrika 17:401–419CrossRefGoogle Scholar
  4. 175.
    Richardson MW (1938) Psychological Bulletin 35:659–660Google Scholar
  5. 176.
    Eckart C, Young G (1936) The approximation of one matrix by another of lower rank. Psychometrika 1:211–218CrossRefGoogle Scholar
  6. 177.
    Young G, Householder AS (1938) Discussion of a set of points in terms of their mutual distances. Psychometrika 3:19–22CrossRefGoogle Scholar
  7. 178.
    De Leeuw J, Heiser W (1982) Theory of multidimensional scaling. In: Krishnaiah PR, Kanal LN (eds) Handbook of Statistics, Vol 2. North Holland, Amsterdam, pp 285–316Google Scholar
  8. 179.
    Mardia KV, Kent JT, Bibby JM (1979) Multivariate Analysis. Academic Press, LondonGoogle Scholar
  9. 180.
    Gower JC, Legendre P (1986) Metric and Euclidean properties of dissimilarity coefficients. J Class 3:5–48CrossRefGoogle Scholar
  10. 181.
    Cuadras CM, Arenas C (1990) A distance based regression model for prediction with mixed data. Commun Statist Theor Meth 19:2261–2279CrossRefGoogle Scholar
  11. 182.
    Cuadras CM, Arenas C, Fortiana J (1996) Some computational aspects of a distance-based model for prediction. Commun Statist Simula 25:593–609CrossRefGoogle Scholar
  12. 183.
    Amat L, Robert D, Besalü E, Carbô-Dorca R (1998) Molecular Quantum Similarity Measures Tuned QSAR: An Antitumoral Family Validation Study. J Chem Inf Comput Sei 38:624–631CrossRefGoogle Scholar
  13. 184.
    Demidovich BP, Maron IA (1981) Computational Mathematics. Mir Publishers, MoscowGoogle Scholar
  14. 185.
    Pierre DA (1969) Optimization Theory with Applications. John Wiley, New YorkGoogle Scholar
  15. 186.
    Carbó R, Besalü E (1994) Definition, mathematical examples and quantum chemical applications of nested summation symbols and logical Kronecker deltas. Computers Chem 18:117–126CrossRefGoogle Scholar
  16. 187.
    Carbó R, Besalü E (1995) Definition and quantum chemical applications of nested summation symbols and logical functions: Pedagogical artificial intelligence devices for formulae writing, sequential programming and automatic parallel implementation. J Math Chem 18:37–72CrossRefGoogle Scholar
  17. 188.
    Hadjipavlou-Litina D, Hansch C (1994) Quantitative structure-activity relationships of the benzodiazepines. A review and reevaluation. Chem Rev 94:1483–1505CrossRefGoogle Scholar
  18. 189.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) AMI: A new general purpose quantum chemical molecular model. J Am Chem Soc 107:3902–3909CrossRefGoogle Scholar
  19. 190.
    Kaiser KLE (ed) (1987) QSAR in environmental toxicology. Reidel Publishing Company, DordrechtGoogle Scholar
  20. 191.
    Hutzinger O (ed) (1989) Handbook of environmental chemistry. Springer-Verlag, BerlinGoogle Scholar
  21. 192.
    Rekker RF (1977) The hydrophobic fragmental constants. Its derivation and application. A means of the characterization membrane systems. In: Nauta WT, Rekker RF (eds) Pharmacochemistry Library. Elsevier, New York, Vol 1Google Scholar
  22. 193.
    Amat L, Carbó-Dorca R, Ponec R (1998) Molecular quantum similarity measures as an alternative to log P values in QSAR studies. J Comput Chem 19:1575–1583CrossRefGoogle Scholar
  23. 194.
    Verhaar HJM, Mulder W, Hermens JLM, Rorije E, Langenberg JH, Peijnenburg WJGM, Sabljic A, Güsten H, Eriksson L, Sjöström M, Müller M, Hansen B, Nouwen J, Karcher W (1995) Overview of Structure-Activity Relationships for Environmental Endpoints. Part 1: General Outline and Procedure. Report of the EU-DG-XII Project QSAR for Predicting Fate and Effects of Chemicals in the Environment. (Contract #EV5V-CT92-0211)Google Scholar
  24. 195.
    Urrestarazu E, Vaes WHJ, Verhaar HJM, Hermens JLM (1998) Quantitative Structure-Activity Relationships for the Aquatic Toxicity of Polar and Nonpolar Narcotic Pollutants. J Chem Inf Comput Sci 38:845–852CrossRefGoogle Scholar
  25. 196.
    AMPAC 6.0,1994 Semichem, 7128 Summit, Shawnee, KS 66216 D.AGoogle Scholar
  26. 197.
    Cattell RB (1966) the scree test for the number of factors. Multivariate Behavioral Research 9:331–341Google Scholar
  27. 198.
    Oxender DL, Fox CF (eds) (1987) Protein Engineering. Alan R. Liss, New York, pp 221–224Google Scholar
  28. 199.
    Leatherbarrow RJ, Fersht AJ (1986) Protein Engineering. Protein Eng 1:7–16CrossRefGoogle Scholar
  29. 200.
    Hellberg S, Sjostrom M, Skagerberg B, Wold S (1987) Peptide quantitative structure-activity relationships, a multivariate approach. J Med Chem 30:1126–1135CrossRefGoogle Scholar
  30. 201.
    Kato A, Yutani K (1988) Correlation of surface properties with conformational stabilities of wild-type and six mutant tryptophan synthase alpha-subunits substituted at the same position. Protein Eng 2:153–156CrossRefGoogle Scholar
  31. 202.
    Lee C, Levitt M (1991) Accurate prediction of the stability and activity effects of site-directed mutagenesis on a protein core. Nature 352:448–451CrossRefGoogle Scholar
  32. 203.
    Collantes ER, Dunn WJ III (1995) Amino acid side-chain descriptors for quantitative structure-activity relationship studies of peptide analogues. J Med Chem 38:2705–2713CrossRefGoogle Scholar
  33. 204.
    Zbilut JP, Giuliani A, Webber CL Jr, Colosimo A (1998) Recurrence quantification analysis in structure-function relationships of proteins: an overview of a general methodology applied to the case of TEM-1 beta-lactamase. Protein Eng 11:87–93CrossRefGoogle Scholar
  34. 205.
    Hutchison CA III, Phillips S, Edgell MH, Gillam S, Jahnke P, Smith M (1978) Mutagenesis at a specific position in a DNA sequence. J Biol Chem 253:6551–6560Google Scholar
  35. 206.
    DeSantis G, Berglund P, Stabile MR, Gold M, Jones JB (1998) Site-directed mutagenesis combined with chemical modification as a strategy for altering the specificity of the SI and SV pockets of subtilisin Bacillus lentus. Biochem 37:5968–5973CrossRefGoogle Scholar
  36. 207.
    Mei HC, Liaw YC, Li YC, Wang DC, Takagi H, Tsai YC (1998) Engineering subtilisin YaB: restriction of substrate specificity by the substitution of Gly124 and Gly151 with Ala. Protein Eng 11:109–117CrossRefGoogle Scholar
  37. 208.
    Narinx E, Baise E, Gerday C (1997) Subtilisin from psychophilic antarctic bacteria: characterization and site-directed mutagenesis of residues possibly ivolved in the adaptation to cold. Protein Eng 10:1271–1279CrossRefGoogle Scholar
  38. 209.
    Takagi H, Ohtsu I, Nakamori S (1997) Construction of novel subtilisin E with high specificity, activity and productivity through multiple amino acid substitutions. Protein Eng 10:985–989CrossRefGoogle Scholar
  39. 210.
    Stauffer CE, Etson D (1969) The effect of subtilisin activity on oxidizing a methionine residue. J Biol Chem 244:5333–5338Google Scholar
  40. 211.
    Estell DA, Graycar TP, Wells JA (1985) Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J Biol Chem 260:6518–6521Google Scholar
  41. 212.
    Wells JA, Vasser M, Powers DB (1985) Cassette mutagenesis: an efficient method for generation of multiple mutations at defined sites. Gene 34:315–323CrossRefGoogle Scholar
  42. 213.
    PC Spartan Plus, Wavefunction Inc., Irvine, CA 92612 USAGoogle Scholar
  43. 214.
    Damborsky J (1998) Quantitative structure-function and structure-stability relationships of purposely modified proteins. Protein Eng 11:21–30CrossRefGoogle Scholar
  44. 215.
    Nakai K, Kidera A, Kanehisa M (1988) Cluster analysis of amino acid indices for prediction of protein structure and function. Protein Eng 2:93–100CrossRefGoogle Scholar
  45. 216.
    Tomii K, Kanehisa M (1996) Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins. Protein Eng 9:27–36CrossRefGoogle Scholar
  46. 217.
    Kawashima S, Ogata H, Kanehisa M (1999) AAindex: amino acid index database. Nucleic Acids Res 27:368–369CrossRefGoogle Scholar
  47. 218.
    Sneath PH (1966) Relations between chemical structure and biological activity in peptides. J Theor Biol 12:157–195CrossRefGoogle Scholar
  48. 219.
    Oobatake M, Ooi T (1977) An analysis of non-bonded energy of proteins. J Theor Biol 67:567–584CrossRefGoogle Scholar
  49. 220.
    Wells JA, Powers DB, Bott RR (1987) In: Oxender DL, Fox CF (eds) Protein engineering. Alan R Liss, New York, pp 279–287Google Scholar
  50. 221.
    Robert D, Gironés X, Carbó-Dorca R (1999) Quantification of the influence of single-point mutations on Haloalkane dehalogenase activity: a quantum similarity study. J Chem Inf Comput Sci. in pressGoogle Scholar
  51. 222.
    Carbo-Dorca R, Amat L, Besalú E, Gironés X, Robert D (1999) Quantum molecular similarity: theory and applications to the evaluation of molecular properties, biological activities and toxicity. In: Carbo-Dorca R, Mezey PG (eds) The Fundamentals of Molecular Similarity. Kluwer, New York, in pressGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Ramon Carbó-Dorca
    • 1
  • David Robert
    • 1
  • Lluís Amat
    • 1
  • Xavier Gironés
    • 1
  • Emili Besalú
    • 1
  1. 1.Institute of Computational Chemistry, Campus MontiliviUniversity of GironaGironaSpain

Personalised recommendations