Skip to main content

The Endothelium as an Immune Organ: Active Player and Passive Target?

  • Chapter
Book cover Immune Response in the Critically Ill

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT,volume 31))

Abstract

The vascular endothelium lines the vascular tree and covers several square meters. One of its characteristics is its heterogeneity, which actually makes it difficult to discuss ‘the endothelial cell’ and to draw conclusions on results from different types of experiment. Endothelial cells are no longer considered as passive bystanders, but play a central role in the coordination of the inflammatory response. Endothelial cells are dynamic participants in the communication with circulating blood cells, acting as doorkeepers in blood cell margination and extravasation. Endothelial cells are important sites of synthesis of mediators including those providing an adequate vascular tone. Endothelial cells further regulate coagulation and fibrinolysis, maintain selective permeability and at the same time serve as target cells for many substances released during traumatic and septic shock [1]. Endothelial cell regulated vascular growth is beyond the scope of this chapter. Since only a few endothelial cells are circulating [2], it is difficult to monitor their status, and this will be discussed further below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schlag G, Redl H (1990) Endothelium as the interface between blood and organ in the evolution of organ failure. In: Schlag G, Redl H, Siegel JH (eds) Shock, Sepsis, and Organ Failure-First Wiggers Bernard Conference. Springer-Verlag, Berlin, pp 210–271

    Chapter  Google Scholar 

  2. Hladovec J (1978) Endothelial injury by nicotine and its prevention. Experientia 34: 1585–1586

    Article  PubMed  CAS  Google Scholar 

  3. Pober JS, Cotran RS (1990) The role of endothelial cells in inflammation. Transplantation 50:537–544

    Article  PubMed  CAS  Google Scholar 

  4. Hunt BJ, Jurd KM (1998) Endothelial function in inflammatory, sepsis, reperfusion and the vasculitides. In: Halliday A, Hunt BJ, Poston L, Schachter M (eds) An Introduction to Vascular Biology from Physiology to Pathophysiology. Cambridge University Press, Cambridge, pp 225–247

    Google Scholar 

  5. Korthuis RJ, Anderson DC, Granger DN (1994) Role of neutrophil-endothelial cell adhesion in inflammatory disorders. J Crit Care 9:47–71

    Article  PubMed  CAS  Google Scholar 

  6. Geng JG, Bevilacqua MP, Moore KL, et al (1990) Rapid neutrophil adhesion to activated endothelium mediated by GMP140. Natusre 343:757–760

    Article  CAS  Google Scholar 

  7. Patel KD, Zimmerman GA, Prescott SM, McEver RP, McIntyre TM (1991) Oxygen radicals induce human endothelial cells to express GMP140 and bind neutrophils. J Cell Biol 112: 749–759

    Article  PubMed  CAS  Google Scholar 

  8. Hattori R, Hamilton KK, McEver RP, Sims PJ (1989) Complement proteins C5b-9 induce secretion of high molecular weight multimers of endothelial von Willebrand factor and translocation of granule membrane protein GMP140 to the cell surface. J Biol Chem 264: 9053–9060

    PubMed  CAS  Google Scholar 

  9. Toothill VJ, van Mourik JA, Niewenhuis HK, Metzelaar MJ, Pearson JD (1990) Characterization of the enhanced adhesion of neutrophil leukocytes to thrombin stimulated endothelial cells. J Immunol 145:283–291

    PubMed  CAS  Google Scholar 

  10. Zimmerman GA, McIntyre TM, Mehra M, Prescott SM (1990) Endothelial cell associated platelet activating factor: a novel mechanism for signaling intercellular adhesion. J Cell Biol 110:529–540

    Article  PubMed  CAS  Google Scholar 

  11. Rosen SD, Bertozzi CR (1996) Leukocyte adhesion: two selectins converge on sulphate. Curr Biol 6:261–264

    Article  PubMed  CAS  Google Scholar 

  12. McEver RP (1991) Selectins: novel receptors that mediate leukocyte adhesion during inflammation. Thromb Haemost 65:223–228

    PubMed  CAS  Google Scholar 

  13. Vercellotti GM, Moldow CF, Wickham NWR, Jacobs HS (1990) EndotheUal cell platelet activating factor primes neutrophil responses: amplification of endothelial activation by neutrophil products. J Lipid Mediat 2 (suppl):S23–S30

    PubMed  CAS  Google Scholar 

  14. Schafer AI, Rodriguez R, Loscalzo J, Gimbrone MA (1989) Inhibition of vascular endothelial cell prostacyclin synthesis by plasmin. Blood 74:1015–1020

    PubMed  CAS  Google Scholar 

  15. Eppihimer MJ, Russen J, Anderson DC, Epstein CJ, Laroux S, Granger DN (1997) Modulation of P-selectin expression in the postischemic intestinal microvasculature. Am J Physiol 273: G1326–G1332

    PubMed  CAS  Google Scholar 

  16. Armstead VE, Minchenko AG, Schuhl RA, Hayward R, Nossuli TO, Lefer AM (1997) Regulation of P-selectin expression in human endothelial cells by nitric oxide. Am J Physiol 273: H740–H746

    PubMed  CAS  Google Scholar 

  17. Horie Y, Wolf R, Anderson DC, Granger DN (1998) Nitric oxide modulates gut ischemiareperfusion-induced P-selectin expression in murine liver. Am J Physiol 275:H520–H526

    PubMed  CAS  Google Scholar 

  18. Perretti M (1997) Endogenous mediators that inhibit the leukocyte-endothelium interaction. Trends Pharmacol Sci 18:418–425

    PubMed  CAS  Google Scholar 

  19. Utgaard JO, Jahnsen FL, Bakka A, Brandtzaeg P, Haraldsen G (1998) Rapid secretion of prestored interleukin 8 from Weibel-Palade bodies of microvascular endothelial cells. J Exp Med 188:1751–1756

    Article  PubMed  CAS  Google Scholar 

  20. Redl H, Dinges HP, Schlag G (1987) Quantitative estimation of leukostasis in the posttraumatic lung: canine and human autopsy data. Prog Clin Biol Res 236A:43–53

    PubMed  CAS  Google Scholar 

  21. Pretorius JP, Schlag G, Redl H, et al (1987) The ‘lung in shock’ as a resuit of hypovolemictraumatic shock in baboons. J Trauma 27:1344–1353

    Article  PubMed  CAS  Google Scholar 

  22. Yao Y-M, Bahrami S, Leichtfried G, Redl H, Schlag G (1996) Significance of NO in hemorrhagic-induced hemodynamic alterations, organ injury, and mortality in rats. Am J Physiol 270:H1616–H1623

    PubMed  CAS  Google Scholar 

  23. Buehren V, Maier B, Hower R, Holzman A, Redl H, Marzi I (1991) PAF antagonist BN52021 reduces hepatic leukocyte adhesion following intestinal ischemia. Circ Shock 34:537–544

    Google Scholar 

  24. Marzi I, Bauer C, Hower R, Buhren V (1993) Leukocyte-endothelial cell interactions in the liver after hemorrhagic shock in the rat. Circ Shock 40:105–114

    PubMed  CAS  Google Scholar 

  25. Mulligan MS, Polley MJ, Bayer RJ, Nunn MF, Paulson JC, Ward PA (1992) Neutrophil-dependent acute lung injury. Requirement for P-selectin (GMP-140). J Clin Invest 90:1600–1607

    Article  PubMed  CAS  Google Scholar 

  26. Fruchterman TM, Spain DA, Wilson MA, Harris PD, Garrison RN (1998) Complement inhibition prevents gut ischemia and endothelial cell dysfunction after hemorrhage/resuscitation. Surgery 124:782–792

    Article  PubMed  CAS  Google Scholar 

  27. Massberg S, Enders G, Leiderer R, et al (1998) Platelet-endothelial cell interactions during ischemia/reperfusion: the role of P-selectin. Blood 92:507–515

    PubMed  CAS  Google Scholar 

  28. Kishimoto TK, Jutila MA, Butcher EC (1990) Identification of a human peripheral lymph node homing receptor: a rapidly down-regulated adhesion molecule. Proc Natl Acad Sci USA 87:2244–2248

    Article  PubMed  CAS  Google Scholar 

  29. Tu L, Delahunty MD, Ding H, Luscinskas FW, Tedder TF (1999) The cutaneous lymphocyte antigen is an essential component of the L-selectin ligand induced on human vascular endothelial cells. J Exp Med 189:241–252

    Article  PubMed  CAS  Google Scholar 

  30. von Andrian UH, Hansell P, Chambers JD, et al (1992) L-selectin function is required for beta2-integrin-mediated neutrophil adhesion at physiological shear rates in vivo. Am J Physiol 263:H1034–H1044

    Google Scholar 

  31. Kishimoto TK, Jutila MA, Berg EL, Butcher EC (1989) Neutrophil MAC-1 and MEL-14 adhesion proteins inversely regulated by chemotactic factors. Science 245:1238–1241

    Article  PubMed  CAS  Google Scholar 

  32. von Andrian UH, Chambers JD, McEvoy LM, Bargatze RE, Arfors KE, Butcher EC (1991) Two-step model of leukocyte-endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte beta2 integrins in vivo. Proc Natl Acad Sei USA 88:7538–7542

    Article  Google Scholar 

  33. Etzioni A, Frydman M, Pollack S, et al (1992) Brief report: Recurrent severe infections cuased by a novel leukocyte adhesions deficiency. N Engl J Med 327:1789–1792

    Article  PubMed  CAS  Google Scholar 

  34. Ley K, Bullard DC, Arbones ML, et al (1995) Sequential contribution of L and P selectin to leukocyte rolling in vivo. J Exp Med 181:669–675

    Article  PubMed  CAS  Google Scholar 

  35. Aplin AE, Howe A, Alahari SK, Juliano RL (1998) Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, Cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol Rev 50:197–263

    PubMed  CAS  Google Scholar 

  36. Pugin J, Schurer Maly CC, Leturcq D, Moriarty A, Ulevitch RJ, Tobias PS (1993) Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci USA 90:2744–2748

    Article  PubMed  CAS  Google Scholar 

  37. Pugin J, Ulevitch RJ, Tobias PS (1993) A critical role for monocytes and CD14 in endotoxinindueed endothelial cell activation. J Exp Med 178:2193–2200

    Article  PubMed  CAS  Google Scholar 

  38. Yang RB, Mark MR, Gray A, et al (1998) ToH like receptor 2 mediates lipopolysaeeharide induced cellular signalling. Nature 395:284–288

    Article  PubMed  CAS  Google Scholar 

  39. Mantovani A, Bussolino F, Introna M (1997) Cytokine regulation of endothelial cell function: from molecular level to the bedside. Immunol Today 18:231–240

    Article  PubMed  CAS  Google Scholar 

  40. Huang K, Fishwild DM, Wu HM, Dedrick RL (1995) Lipopolysaceharide-induced E-selectin expression requires continuous presence of LPS and is inhibited by bactericidal/permeability-inereasing protein. Inflammation 19:389–404

    Article  PubMed  CAS  Google Scholar 

  41. Melrose J, Tsurushita N, Liu G, Berg EL (1998) IFN gamma inhibits activation induced expression of E-and P-selectin on endothelial cells. J Immunol 161:2457–2464

    PubMed  CAS  Google Scholar 

  42. Redl H, Dinges HP, Buurman WA, et al (1991) Expression of endothelial leukocyte adhesion molecule-1 in septic but not traumatic/hypovolemic shock in the baboon. Am J Pathol 139:461–466

    PubMed  CAS  Google Scholar 

  43. Engelberts I, Samyo SK, Leeuwenberg JEM, Van der Linden CJ, Buurman WA (1992) A role for ELAM-1 in the pathogenesis of MOF during septic shock. Ann Surg 53:136–144

    CAS  Google Scholar 

  44. Nathens AB, Bitar R, Watson RWG, et al (1998) Thiol-mediated regulation of ICAM-1 expression in endotoxin-induced acute lung injury. J Immunol 160:2959–2966

    PubMed  CAS  Google Scholar 

  45. Christofidou-Solomidou M, Nakada MT, Williams J, Muller WA, DeLisser HM (1997) Neutrophil platelet endothelial cell adhesion molecule-1 participates in neutrophil recruitment at inflammatory sites and is down-regulated after leukocyte extravasation. J Immunol 158:4872–4878

    PubMed  CAS  Google Scholar 

  46. Chosay JG, Fisher MA, Farhood A, Ready KA, Dunn CJ, Jaeschke H (1998) Role of PECAM-1 (CD31) in neutrophil transmigration in murine models of liver and peritoneal inflammation. Am J Physiol 274:G776–G782

    PubMed  CAS  Google Scholar 

  47. Burns AR, Takei F, Doerschuk CM (1994) Quantitation of ICAM-1 expression in mouse lung during pneumonia. J Immunol 153:3189–3198

    PubMed  CAS  Google Scholar 

  48. Barnett CC, Moore EE, Moore FA, Biffl WL, Smith MF Jr, Carl VS (1995) Intercellular adhesion molecule-1 promotes neutrophil-mediated cytotoxicity. Surgery 118:171–175

    Article  PubMed  CAS  Google Scholar 

  49. Biedermann BC, Pober JS (1998) Human endothelial cells induce and regulate cytolytic T cell differentiation. J Immunol 161:4679–4687

    PubMed  CAS  Google Scholar 

  50. Vedder NB, Winn RK, Rice CL, Chi EY, Arfors KE, Harlan JM (1988) A monoclonal antibody to the adherence promoting leukocyte glycoprotein CD18, reduces organ injury and improves survival from hemorrhagic shock and resuscitation in rabbits. J Clin Invest 81:939–944

    Article  PubMed  CAS  Google Scholar 

  51. Squadrito F, AltaviHa D, Canale P, et al (1994) Contribution of intercellular adhesion molecule 1 (ICAM-1) to the pathogenesis of splanchnic artery occlusion shock in the rat. Br J Pharmacol 113:912–916

    PubMed  CAS  Google Scholar 

  52. Garcia-Criado FJ, Toledo-Percyra LH, Lopez-Neblina F, Phillips ML, Paez-Rollys A, Misawa K (1995) Role of P-selectin in total hepatic ischemia and reperfusion. J Am Coll Surg 181:327–334

    PubMed  CAS  Google Scholar 

  53. Buerke M, Weyrich AS, Murohara T, et al (1994) Humanized monoclonal antibody DREG-200 directed against L-selectin protects in feline myocardial reperfusion injury. J Pharmacol Exp Ther 271:134–142

    PubMed  CAS  Google Scholar 

  54. Ramamoorthy C, Sharar SR, Harlan JM, Tedder TF, Winn RK (1996) Blocking L-selectin function attenuates reperfusion injury following hemorrhagic shock in rabbit. Am J Physiol 271:H1871–H1877

    PubMed  CAS  Google Scholar 

  55. Ridings PC, Bloomfield GL, Holloway S, et al (1995) Sepsis-induced acute lung injury is attenuated by selectin blockade following the onset of sepsis. Arch Surg 130:1199–1208

    PubMed  CAS  Google Scholar 

  56. Schlag G, Redl H, Till GO, Davies J, Martin U, Dumont L (1999) Anti-L-selectin antibody treatment of traumatic shock in baboons. Crit Care Med (In Press)

    Google Scholar 

  57. Schlag G, Redl H, Khakpour Z, Davies J, Pretorius J (1993) Hypovolemic-traumatic shock models in baboons. In: Schlag G, Redl H (eds) Pathophysiology of Shock, Sepsis, and Organ Failure. Springer-Verlag, Berlin, pp 384–402

    Google Scholar 

  58. Bertozzi CR, Fukuda S, Rosen SD (1995) Sulfated disaccharide inhibitors in L-selectin: deriving structural leads from a physiological selectin ligand. Biochemistry 34:14271–14278

    Article  PubMed  CAS  Google Scholar 

  59. Crockett-Torabi E, Sulenbarger B, Smith CW, Fantone JC (1995) Activation of human neutrophils through L-selectin and MAC-1 molecules. J Immunol 154:2291–2302

    PubMed  CAS  Google Scholar 

  60. Simon SI, Burns AR, Taylor AD, et al (1995) L-selectin (CD62L) cross-linking signals neutrophil adhesive functions via the Mac-1 (GD11b/CD18) beta 2 integrin. J Immunol 155:1502–1514

    PubMed  CAS  Google Scholar 

  61. Rochon YP, Simon SI, Lynam EB, Sklar LA (1994) A role for lectin interactions during human neutrophil aggregation. J Immunol 152:1385–1393

    PubMed  CAS  Google Scholar 

  62. Eichacker PQ, Hoffman WD, Parese A, et al (1993) Leukocyte CD18 monoclonal antibody worsens endotoxemia and cardiovascular injury in canines with septic shock. J Appl Physiol 74:1885–1892

    Article  PubMed  CAS  Google Scholar 

  63. Redl H, Schlag G, Davies J, Robinson M (1993) Detrimental effects of the application of anti-CD18 antibodies in baboon live E. coli sepsis. Circ Shock (Suppl) 2:33 (Abst)

    Google Scholar 

  64. Sharar SR, Chapman NN, Flaherty LC, Harlan JM, Tedder TF, Winn RK (1996) L-selectin (CD62L) blockade does not impair peritoneal neutrophil emigration or subcutaneous host defense to bacteria in rabbits. J Immunol 157:2555–2563

    PubMed  CAS  Google Scholar 

  65. Garcia NM, Mileski WJ, Sikes P, et al (1994) Effect of inhibiting leukocyte integrin (CD18) and selectin (L-selectin) on susceptibility to infection with Pseudomonas aeruginosa. J Trauma 36:714–719

    Article  PubMed  CAS  Google Scholar 

  66. Mileski WJ, Winn RK, Vedder NB, Pohlman TH, Harlan JM, Rice CL (1990) Inhibition of CD18-dependent neutrophil adherence reduces organ injury after hemorrhagic shock in primates. Surgery 108:206–212

    PubMed  CAS  Google Scholar 

  67. Schoenberg MH, Poch B, Younes M, et al (1991) Involvement of neutrophils in postischaemic damage to the small intestine. Gut 32:905–912

    Article  PubMed  CAS  Google Scholar 

  68. Hernandez LA, Grisham MB, Twohig B, Arfors KE, Harlan JM, Granger N (1987) Role of neutrophils in ischemia reperfusion induced microvascular injury. Am J Physiol 253:H699–703

    PubMed  CAS  Google Scholar 

  69. Simpson PJ, Tood RF, Fantone JC, Mickelson JK, Griffin JD, Lucchesi BR (1988) Reduction of experimental myocardial reperfusion injury by a monoclonal antibody (anti-Mol, anti-CD11b) that inhibits leukocyte adhesion. J Clin Invest 81:624

    Article  PubMed  CAS  Google Scholar 

  70. Cooper JA, Neumann PH, Wright SD, Malik AB (1989) Pulmonary vascular sequestration of neutrophils in endotoxemia: role of CD18 leukocyte surface glycoprotein. Am Rev Respir Dis 139:A301

    Article  Google Scholar 

  71. Doerschuk CM, Winn RK, Harlan JM (1990) Mechanisms of neutrophil emigration. In: Springer TA, Anderson DC, Rosenthal AS, Rothlein R (eds) Leukocyte Adhesion Molecules: Structure, Function and Regulation. Springer-Verlag, New York, pp 87–94

    Google Scholar 

  72. Walsh CJ, Carey D, Cook DJ, Bechard DE, Fowler AA, Sugerman HJ (1991) Anti CD18 antibody attenuates neutropenia and alveolar capillary membrane injury during gram-negative sepsis. Surgery 110:205–212

    PubMed  CAS  Google Scholar 

  73. Barton RW, Rothlein R, Ksiazek J, Kennedy C (1989) The effect of anti-intercellular adhesion molecule MoAb on phorbol ester-induced rabbit lung inflammation. J Immunol 143:1278–1282

    PubMed  CAS  Google Scholar 

  74. Ismail G, Morganroth ML, Todd RF, Boxer LA (1987) Prevention of pulmonary injury in isolated perfused rat lungs by activated human neutrophils preincubated with anti-Mol monoclonal antibody. Blood 69:1167–1177

    PubMed  CAS  Google Scholar 

  75. Kaslovsky RA, Morgan MJ, Lum H, et al (1990) Pulmonary edema induced by phagocytosing neutrophils. Protective effect of monoclonal antibody against phagocyte CD18 integrin. Circ Res 67:795–802

    PubMed  CAS  Google Scholar 

  76. Argenbright LW, Letts LG, Rothlein R (1991) Monoclonal antibodies to the leukocyte membrane CD18 glycoprotein complex and to intercellular adhesion molecule-1 inhibit leukocyte-endothelial adhesion in rabbits. J Leukocyte Biol 49:253–257

    PubMed  CAS  Google Scholar 

  77. Argenbright LW, Barton RW (1991) The Shwartzman response: a model of ICAM-1 dependent vasculitis. Agents Actions 34:208–210

    Article  PubMed  CAS  Google Scholar 

  78. Hansen JB, Olsen R, Webster P (1997) Association of tissue factor pathway inhibitor with human umbilical vein endothelial cells. Blood 90:3568–3578

    PubMed  CAS  Google Scholar 

  79. Sandström J, Nilsson P, Karlsson K, Marklund SL (1994) 10-fold increase in human plasma extracellular superoxide dismutase content caused by a mutation in heparin binding domain. J Biol Chem 269:19163–19166

    PubMed  Google Scholar 

  80. Platt JL, Dalmasso AP, Lindman BJ, Ihrcke NS, Bach FH (1991) The role of C5a and antibody in the release of heparan sulfate from endothelial cells. Eur J Immunol 21:2887–2890

    Article  PubMed  CAS  Google Scholar 

  81. Lucchesi BR (1994) Complement, neutrophils and free radicals: mediators of reperfusion injury. Arzneimittelforschung 44:420–432

    PubMed  CAS  Google Scholar 

  82. Morrison AM, Wang P, Chaudry IH (1996) A novel nonanticoagulant heparin prevents vascular endothelial cell dysfunction during hyperdynamic sepsis. Shock 6:46–51

    Article  PubMed  CAS  Google Scholar 

  83. Ogawa S, Gerlach H, Esposito C, Pasagian-Macaulay A, Brett J, Stern D (1990) Hypoxia modulates the barrier and coagulant function of cultured bovine endothelium. Increased monolayer permeability and induction of procoagulant properties. J Clin Invest 85:1090–1098

    Article  PubMed  CAS  Google Scholar 

  84. Hack CE (1999) Cytokines, coagulation and fibrinolysis. In: Redl H, Schlag G (eds) Cytokines in Severe Sepsis and Septic Shock. Birkhäuser Verlag, Basel, pp 199–212

    Chapter  Google Scholar 

  85. Krishnaswamy G, Kelley J, Yerra L, Smith KJ, Chi DS (1999) Human endothelium as a source of multifunctional cytokines: molecular regulation and possible role in human disease. J Interferon Cytokine Res 19:91–104

    Article  PubMed  CAS  Google Scholar 

  86. Rajavashisth TB, Andalibi A, Territo MC, et al (1990) Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature 344:254–257

    Article  PubMed  CAS  Google Scholar 

  87. Wolff B, Burns AR, Middleton J, Rot A (1998) Endothelial cell “memory” of inflammatory stimulation: human venular endothelial cells store interleukin-8 in Weibel-Palade bodies. J Exp Med 188:1757–1762

    Article  PubMed  CAS  Google Scholar 

  88. Pugin J, Ulevitch RJ, Tobias PS (1994) Human endothelial cell responses to endotoxin are dramatically enhanced by human blood. Agents Actions 41:C183–C184

    Article  Google Scholar 

  89. Decaterina R, Libby P, Peng HB, et al (1995) Nitric oxide decrease cytokine induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 96:60–68

    Article  CAS  Google Scholar 

  90. Henn V, Slupsky JR, Gräfe M, et al (1998) CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391:591–594

    Article  PubMed  CAS  Google Scholar 

  91. Sacks T, Moldow CF, Craddock PR, Bowers TK, Jacobs HS (1978) Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage. J Clin Invest 61:1161–1167

    Article  PubMed  CAS  Google Scholar 

  92. Martin WJ (1984) Neutrophils kill pulmonary endothelial cells by a hydrogen peroxide dependent pathway. An in vivo model of neutrophil mediated lung injury. Am Rev Respir Dis 130:209–213

    PubMed  CAS  Google Scholar 

  93. Weiss SJ, Young J, LoBuglio AF, Slivka A, Nimeh NF (1981) Role of hydrogen peroxide in neutrophil-mediated destruction of cultured endothelial cells. J Clin Invest 68:714–721

    Article  PubMed  CAS  Google Scholar 

  94. Shasby DM, Shasby SS, Peach MJ (1983) Granulocytes and phorbol myristate acetate increase permeability to albumin of cultured endothelial monolayers and isolated perfused lungs. Role of oxygen radicals and granulocyte adherence. Am Rev Respir Dis 127:72–76

    PubMed  CAS  Google Scholar 

  95. Ward AB (1986) Neutrophil-dependent and independent increases in endothelial permeability. In: Novelli GP, Ursini F (eds) Oxygen Free Radicals in Shock. S. Karger, Basel, pp 83–86

    Google Scholar 

  96. Redl H, Schlag G, Schiesser A, Bahrami S, Junger W, Spragg RG (1986) Oxidant-induced alterations in lung adenine nucleotides precede edema formation. In: Novelli GP, Ursini F (eds) Oxygen Free Radicals in Shock. S. Karger, Basel, pp 180–184

    Google Scholar 

  97. Fehr J, Moser R, Leppert D, Groscurth P (1985) Antiadhesive properties of biological surfaces are protective against stimulated granulocytes. J Clin Invest 76:535–542

    Article  PubMed  CAS  Google Scholar 

  98. Hoover RL, Robinson JM, Karnovsky MJ (1987) Adhesion of polymorphonuclear leukocytes to endothelium enhances the efficiency of detoxification of oxygen-free radicals. Am J Pathol 126:258–268

    PubMed  CAS  Google Scholar 

  99. Forsild J, Bjrksten B, Hagersten K, Hed J (1989) Erythrocyte mediated scavenging of reactive oxygen metabolites generated by human polymorphonuclear leukocytes during phagocytosis: comparison between normal and Downs syndrome blood cells. Inflammation 13:543–551

    Article  Google Scholar 

  100. Suematsu M, Schmid-Schönbein GW, Chavez-Chavez RH, et al (1993) In vivo visualization of oxidative changes in microvessels during neutrophil activation. Am J Physiol 264:H881–H891

    PubMed  CAS  Google Scholar 

  101. Halliwell B, Gutteridge JMC (1986) Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys 246:501–514

    Article  PubMed  CAS  Google Scholar 

  102. Bulkley GB (1993) Free radicals and other reactive oxygen metabolites: clinical relevance and the therapeutic efficacy of antioxidant therapy. Surgery 113:479–483

    PubMed  CAS  Google Scholar 

  103. Redl H, Gasser H, Schlag G, Marzi I (1993) Involvement of oxygen radicals in shock related cell injury. Br Med Bull 49:556–565

    PubMed  CAS  Google Scholar 

  104. Terada LS, Dormish JJ, Shanley PF, Leff JA, Anderson BO, Repine JE (1992) Circulating xanthine oxidase mediates lung neutrophil sequestration after intestinal ischemia-reperfusion. Am J Physiol 263:L394–L401

    PubMed  CAS  Google Scholar 

  105. Suttorp N, Hiuppenstiel S, Fuhrmann M, Krüll M, Podzuweit T (1997) Role of NO and phosphodiesterase isoenzyme 2 for reduction of endothelial hyperpermeability. Shock 8:52

    Google Scholar 

  106. Menger MD, Rucker M, Vollmar B (1997) Capillary dysfunction in striated muscle ischemia/reperfusion: on the mechanisms of capillary “no-reflow”. Shock 8:2–7

    Article  PubMed  CAS  Google Scholar 

  107. Webb DJ, Monge JC, Rabelink TJ, Yanagisawa M (1998) Endothelin: new discoveries and rapid progress in the clinic. Trends Pharmacol Sci 19:5–8

    Article  PubMed  Google Scholar 

  108. Redl H, Schlag G, Bahrami S, et al (1994) Big-endothelin release in baboon bacteria is partially TNF dependent. J Lab Clin Med 124:796–801

    PubMed  CAS  Google Scholar 

  109. Palmer RMJ, Bridge L, Foxwell NA, Moncada S (1992) The role of nitric oxide in endothelial cell damage and its inhibition by glucocorticoids. Br J Pharmacol 105:11–12

    PubMed  CAS  Google Scholar 

  110. Kristof AS, Goldberg P, Laubach V, Hussain SNA (1989) Role of inducible nitric oxide synthase in endotoxin-induced acute lung injury. Am J Respir Crit Care Med 158:1883–1889

    Google Scholar 

  111. Cuzzocrea S, Filippelli A, Zingarelli B, Falciani M, Caputi AP, Rossi F (1997) Role of nitric oxide in a nonseptic shock model induced by zymosan in the rat. Shock 7:351–357

    Article  PubMed  CAS  Google Scholar 

  112. Kilbourn RG, Szabo C, Traber DL (1997) Beneficial versus detrimental effects of nitric oxide synthase inhibitors in circulatory shock: lessons learned from experimental and clinical studies. Shock 7:235–246

    Article  PubMed  CAS  Google Scholar 

  113. Schlag G, Redl H, Davies J, van Vuuren CJJ, Smuts P (1993) Live Escherichia coli sepsis models in baboons. In: Schlag G, Redl H (eds) Pathophysiology of Shock, Sepsis, and Organ Failure. Springer-Verlag, Berlin, pp 1076–1107

    Google Scholar 

  114. Schlag G, Redl H, Davies J, Haller I (1994) Anti-tumor necrosis factor antibody treatment of recurrent bacteremia in a baboon model. Shock 2:10–18

    Article  PubMed  CAS  Google Scholar 

  115. Redl H, Schlag G, Bahrami S (1999) Endotoxemia in primate models. In: Brade H, Morrison DC, Opal S, Vogel S (eds) Endotoxin in Health and Disease. Marcel Dekker, Inc. New York, pp 795–808

    Google Scholar 

  116. Cobb JP, Danner RL (1996) Nitric oxide and septic shock. JAMA 275:1192–1196

    Article  PubMed  CAS  Google Scholar 

  117. Avontuur JA, Boomsma F, van den Meiracker AH, de Jong FH, Bruining HA (1999) Endothelin-1 and blood pressure after inhibition of nitric oxide synthesis in human septic shock. Circulation 99:271–275

    PubMed  CAS  Google Scholar 

  118. Bahrami S, Strohmaier W, Gasser H, et al (1997) 2,4-Diamino-5,6,7,8-tetrahydro-6-(1-erythro-1, 2-dihydroxypropyl) pteridine (4-ABH4) reduces nitric oxide formation and improves survival rate in experimental endotoxin shock. Shock 8 (Suppl): 56 (Abst)

    Google Scholar 

  119. Wray GM, Miliar CG, Hinds CJ, Thiemermann C (1998) Selective inhibition of the activity of inducible nitric oxide synthase prevents the circulatory failure, but not the organ injury/dysfunction, caused by endotoxin. Shock 9:329–335

    Article  PubMed  CAS  Google Scholar 

  120. Huang KT, Kuo L, Liao JC (1998) Lipopolysaeeharide activates endothelial nitric oxide synthase through protein tyrosine kinase. Biochem Biophys Res Commun 245:33–37

    Article  PubMed  CAS  Google Scholar 

  121. Zhou M, Wang P, Chaudry IH (1997) Endothelial nitric oxide synthase is downregulated during hyperdynamic sepsis. Bioehim Biophys Acta 1335:182–190

    Article  CAS  Google Scholar 

  122. Harbrecht BG, Wu B, Watkins SC, Marshall HPJ, Peitzman AB, Billiar TR (1995) Inhibition of nitric oxide synthase during hemorrhagic shock increases hepatic injury. Shock 4:332–337

    Article  PubMed  CAS  Google Scholar 

  123. Adachi T, Hori S, Miyazaki K, et al (1998) Inhibition of nitric oxide synthesis aggravates myocardial ischemia in hemorrhagic shock in constant pressure model. Shock 9:204–209

    Article  PubMed  CAS  Google Scholar 

  124. Harbrecht BG, Wu B, Watkins SC, Billiar TR, Peitzman AB (1997) Inhibition of nitric oxide synthesis during severe shock but not after resuscitation increases hepatic injury and neutrophil accumulation in hemorrhaged rats. Shock 8:415–421

    Article  PubMed  CAS  Google Scholar 

  125. Thiemermann C, Wu CC, Piper J, Chen SJ, Szabo C, Vane JR (1997) Aminoguanidine attenuates the delayed circulatory failure in endotoxic and haemorrhagic shock in the anaesthetized rat. Can J Physiol Pharmacol 1 (Suppl):471 (Abst)

    Google Scholar 

  126. Southan GJ, ZingareHi B, O’Connor M, Salzman AL, Szabo C (1996) Spontaneous rearrangement of aminoalkylguanidines into mercaptoalkyluanidines-a novel class of nitric oxide synthase inhibitors with selectivity towards the inducible isoform. Br J Pharmacol 117:619–632

    PubMed  CAS  Google Scholar 

  127. Garcia-Cardena G, Fan R, Shah V, et al (1998) Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392:821–824

    Article  PubMed  CAS  Google Scholar 

  128. Malinski T, Taha Z (1992) Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature 358:676–678

    Article  PubMed  CAS  Google Scholar 

  129. Huk I, Nanobashvili J, Neumayer C, et al (1997) L-arginine treatment alters the kinetics of nitric oxide and superoxide release and reduces ischemia/reperfusion injury in skeletal muscle. Circulation 96:667–675

    PubMed  CAS  Google Scholar 

  130. Hallström S, Gasser H, Kropik K, et al (1997) Effect of different NO-donors in the isolated rabbit heart perfused with a tyrode-albumin-erythrocyte suspension. Shock 8 (Suppl):53 (Abst)

    Google Scholar 

  131. Christopher TA, Ma XL, Lefer AM (1994) Beneficial actions of S-nitroso-N-acetylpenicillamine, a nitric oxide donor, in murine traumatic shock. Shock 1:19–24

    Article  PubMed  CAS  Google Scholar 

  132. Angele MK, Small N, Ayala A, Cioffi WG, Bland KI, Chaudry IH (1999) L-arginine: a unique amino acid for restoring the depressed macrophage functions after trauma-hemorrhage. J Trauma 46:34–41

    Article  PubMed  CAS  Google Scholar 

  133. Szabo C, Csaki C, Benyo Z, Reivich M, Kovach AG (1992) Role of the L-arginine-nitric oxide pathway in the changes in cerebrovascular reactivity following hemorrhagic hypotension and retransfusion. Circ Shock 37:307–316

    PubMed  CAS  Google Scholar 

  134. Daughters K, Waxman K, Nguyen H (1996) Increasing nitric oxide production improves survival in experimental hemorrhagic shock. Resuscitation 31:141–144

    Article  PubMed  CAS  Google Scholar 

  135. Rubbo H, Radi R, Trujillo M, et al (1994) Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem 269:26066–26075

    PubMed  CAS  Google Scholar 

  136. Landino LM, Crews BC, Timmons MD, Morrow JD, Marnett LJ (1996) Peroxynitrite, the coupling product of nitric oxide and superoxide, activates prostaglandin biosynthesis. Proc Natl Acad Sci USA 93:15069–15074

    Article  PubMed  CAS  Google Scholar 

  137. Hierholzer C, Harbrecht B, Menezes JM, et al (1998) Essential role of induced nitric oxide in the initiation of the inflammatory response after hemorrhagic shock. J Exp Med 187:917–928

    Article  PubMed  CAS  Google Scholar 

  138. Liu P, Xu B, Hock CE, Nagele R, Sun FF, Wong PY (1998) NO modulates P-selectin and ICAM-1 mRNA expression and hemodynamic alterations in hepatic I/R. Am J Physiol 275:H2191–H2198

    PubMed  CAS  Google Scholar 

  139. Kneidinger R, Bahrami S, Redl H, Schlag G, Robinson M (1996) Comparison of endothelial activation during endotoxic and posttraumatic conditions by serum analysis of soluble E-selectin in nonhuman primates. J Lab Clin Med 128:515–519

    Article  PubMed  CAS  Google Scholar 

  140. Law MM, Cryer HG, Abraham E (1994) Elevated levels of soluble ICAM-1 correlate with the development of multiple organ failure in severely injured trauma patients. J Trauma 37:100–109

    Article  PubMed  CAS  Google Scholar 

  141. Simons RK, Hoyt DB, Winchell RJ, Rose RM, Holbrook T (1996) Elevated selectin levels after severe trauma: a marker for sepsis and organ failure and a potential target for immunomodulatory therapy. J Trauma 41:653–662

    Article  PubMed  CAS  Google Scholar 

  142. Kneidinger R, Bahrami S, Redl H, et al (1996) Evaluation of a soluble E-selectin enzymelinked immunosorbent assay under posttraumatic conditions. J Lab Clin Med 128:520–523

    Article  PubMed  CAS  Google Scholar 

  143. Jochum M, Siebeck M, Briegel J, Inthorn D, Waydhas C, Fritz H (1995) Immunological monitoring of new inflammatory parameters in sepsis and trauma patients. Poster at “Kinin’ 95”, September 10–15, Denver, USA

    Google Scholar 

  144. Kayal S, Jais JP, Aguini N, Chaudiere J, Labrousse J (1998) Elevated circulating E-selectin, intercellular adhesion molecule 1, and von Willebrand factor in patients with severe infection. Am J Resp Crit Care Med 157:776–784

    PubMed  CAS  Google Scholar 

  145. Giddings JC (1990) Cytokines and thrombomodulin. In: Warren JB (ed) The endothelium: an introduction to current research. John Wiley & Sons, New York, pp 141–156

    Google Scholar 

  146. Ishii H, Majerus PW (1985) Thrombomodulin is present in human plasma and urine. J Clin Invest 76:2178–2181

    Article  PubMed  CAS  Google Scholar 

  147. Ishii H, Nakano M, Tsubouchi J, et al (1990) Establishment of enzyme immunoassay of human thrombomodulin in plasma and urine using monoclonal antibodies. Thromb Haemost 63:157–162

    PubMed  CAS  Google Scholar 

  148. Ishii H, Uchiyama H, Kazama M (1991) Soluble thrombomodulin antigen in conditioned medium is increased by damage of endotheUal cells. Thromb Haemost 65:618–623

    PubMed  CAS  Google Scholar 

  149. Sawada K, Yamamoto H, Matsumoto K, et al (1992) Changes in thrombomodulin level in plasma of endotoxin-infused rabbits. Thromb Res 65:199–209

    Article  PubMed  CAS  Google Scholar 

  150. Uchiyama H, Ohtani H, Hiraishi S, Horie S, Ishii H, Kazawa M (1992) Changes in plasma thrombomodulin antigen in rabbits developing endotoxin-induced disseminated intravascular coagulation and the effect of heparin. Thromb Res 65:593–604

    Article  PubMed  CAS  Google Scholar 

  151. Takano S, Kimura S, Ohdama S, Aoki N (1990) Plasma thrombomodulin in health and diseases. Blood 10:2024–2029

    Google Scholar 

  152. Redl H, Schlag G, Schiesser A, Davies J (1995) Thrombomodulin release in baboon sepsis: its dependence on the dose of Escherichia coli and the presence of tumor necrosis factor. J Infect Dis 171:1522–1527

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Redl, H. (2002). The Endothelium as an Immune Organ: Active Player and Passive Target?. In: Marshall, J.C., Cohen, J. (eds) Immune Response in the Critically Ill. Update in Intensive Care Medicine, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57210-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57210-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42589-2

  • Online ISBN: 978-3-642-57210-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics