Skip to main content

Trauma Mediators Favor Differentiation of Monocytes to Macrophage Rather Than to Dendritic Cells

  • Chapter
Immune Response in the Critically Ill

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT,volume 31))

Abstract

A monocyte antigen presenting cell (APC) dysfunction after trauma has been repeatedly suggested as being involved in post-injury immunosuppression [1, 2]. Conversely, over-activated ‘angry’ monocytes/macrophages have been implicated in the systemic inflammatory response syndrome as pivotal producers of exaggerated inflammatory cytokines [35]. The post-injury development of increased monocyte production of inflammatory cytokines, like interleukin (IL)-l, IL-8, macrophage inflammatory protein (MIP)-1α, IL-6, and tumor necrosis factor (TNF)-α, parallels depressed monocyte antigen presenting functions and decreased immunostimulatory cytokines, like IL-12 and IL-15. This seems to be a paradox. How can severe trauma simultaneously increase and decrease normal monocyte function? Severe tissue trauma generates substance P leakage from disrupted nerve endings, complement activation products, coagulation system products, platelet activating factor (PAF) production after hypoxia, gut derived endotoxin release, and a variety of other mediators [312]. One unifying characteristic of these trauma generated products is their ability to activate monocyte/macrophage inflammatory monokines and monocyte to macrophage differentiation [1016]. However, recent evidence demonstrates that, unlike lipopolysaccharide (LPS) which activates both pro- and anti-inflammatory monokine gene induction, some of the other trauma-induced mediators have a restricted monocyte activation capacity, preferentially inducing a more restricted set of monocyte pro-inflammatory genes [1719].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayala A, Ertel W, Chaudry IH (1996) Trauma-induced suppression of antigen presentation and expression of major histocompatibility class II antigen complex in leukocytes. Shock 5:79–90

    Article  PubMed  CAS  Google Scholar 

  2. Miller-Graziano CL, Szabo G, Takayama T, Wu JY (1989) Alterations of monocyte function following major injury. In: Faist E, Ninnemann JL, Green D (eds) Immune consequences of trauma, shock and sepsis. Springer, Berlin, pp 95–109

    Google Scholar 

  3. Waxman K (1996) Shock: Ischemia, reperfusion and inflammation. New Horiz 4:153–160

    PubMed  CAS  Google Scholar 

  4. Eigler A, Sinha B, Hartmann G, Endres S (1997) Taming TNF: Strategies to restrain this proinflammatory cytokine. Immunol Today 18:487–492

    Article  PubMed  CAS  Google Scholar 

  5. See RH, Chow AW (1992) Role of the adhesion molecule lymphocyte function associated antigen 1 in toxic shock syndrome toxin 1-induced tumor necrosis factor alpha and interleukin-1b secretion by human monocytes. Infect Immun 60:4957–4960

    PubMed  CAS  Google Scholar 

  6. Pasquale MD, Cipolle MD, Monaco J, Simon N ( 1996) Early inflammatory response correlates with the severity of injury. Crit Gare Med 24:1238–1242

    Article  CAS  Google Scholar 

  7. Kelly JL, O’Sullivan C, O’Riordain M, et al (1997) Is circulating endotoxin the trigger for the systemic inflammatory response syndrome seen after injury? Ann Surg 225:530–543

    Article  PubMed  CAS  Google Scholar 

  8. McBride WT, Armstrong MA, Gilliland H, McMurray TJ (1996) The balance of pro and anti inflammatory cytokines in plasma and bronchoalveolar lavage (BAL) at pediatric cardiac surgery. Cytokine 8:724–729

    Article  PubMed  CAS  Google Scholar 

  9. Armstrong L, Millar AB (1997) Relative production of tumor necrosis factor-α and interleukin 10 in adult respiratory distress syndrome. Thorax 52:442–446

    Article  PubMed  CAS  Google Scholar 

  10. Saban MR, Saban R, Bjorling D, Haak-Frendscho M (1997) Involvement of leukotrienes, TNF-α, and the LFA-1/ICAM-1 interaction in substance P-induced granulocyte infiltration. J Leukoc Biol 61:445–451

    PubMed  CAS  Google Scholar 

  11. Ho WZ, Lai JP, Zhu XH, Uvaydova M, Douglas SD (1997) Human monocytes and macrophages express substance P and neurokinin-1 receptor. J Immunol 159:5654–5660

    PubMed  CAS  Google Scholar 

  12. Ayala A, Chaudry IH (1996) Platelet activating factor and its role in trauma, shock, and sepsis. New Horiz 4:265–275

    PubMed  CAS  Google Scholar 

  13. Im SY, Han SJ, Ko HM, et al (1997) Involvement of nuclear factor-κB in platelet activating factor-mediated tumor necrosis factor-α expression. Eur J Immunol 27:2800–2804

    Article  PubMed  CAS  Google Scholar 

  14. Lo CJ, Cryer HG, Fu MJ, Kim B (1997) Endotoxin-induced macrophage gene expression depends on platelet-activating factor. Arch Surg 132:1342–1347

    PubMed  CAS  Google Scholar 

  15. Jeurissen F, Kavelaars A, Korstjens M, et al (1994) Monocytes express a non-neurokinin substance P receptor that is functionally coupled to MAP kinase. J Immunol 152:2987–2994

    PubMed  CAS  Google Scholar 

  16. Dries DJ (1996) Activation of the clotting system and complement after trauma. New Horiz 4:276–288

    PubMed  CAS  Google Scholar 

  17. Duchemin AM, Anderson CL (1997) Association of non-receptor protein tyrosine kinases with the FcγRI/γ-chain complex in monocytic cells. J Immunol 158:865–871

    PubMed  CAS  Google Scholar 

  18. Rose DM, Winston BW, Chan ED, et al (1997) Fcγ receptor cross-linking activates p42, p38, and JNK/SAPK mitogen-activated protein kinases in murine macrophages. Role for p42MAPK in Feγ receptor stimulated TNF-α synthesis. J Immunol 158:3433–3438

    PubMed  CAS  Google Scholar 

  19. Sanghera JS, Weinstein SL, Aluwalia M, Girn J, Pelech SL (1996) Activation of multiple proline-directed kinases by bacterial lipopolysaccharide in murine macrophages. J Immunol 156:4457–4465

    PubMed  CAS  Google Scholar 

  20. Palucka KA, Taquet N, Sanchez-Chapuis F, Gluckman JC (1998) Dendritic cells as the terminal stage of monocyte differentiation. J Immunol 160:4587–4595

    PubMed  CAS  Google Scholar 

  21. Shortman K, Maraskovsky E (1998) Developmental options. Science 282:424–425

    Article  PubMed  CAS  Google Scholar 

  22. Hart DNJ (1997) Dendritic cells: Unique leukocyte populations which control the primary immune response. Blood 90:3245–3287

    PubMed  CAS  Google Scholar 

  23. Rescigno M, Winzler C, Delia D, Multini C, Lutz M, Ricciardi-Castagnoli P (1997) Dendritic cell maturation is required for initiation of the immune response. J Leukoc Biol 61:415–421

    PubMed  CAS  Google Scholar 

  24. Schuler G, Thurner B, Romani N (1997) Dendritic cells: From ignored cells to major players in T-cell mediated immunity. Int Arch Allergy Immunol 112:317–322

    Article  PubMed  CAS  Google Scholar 

  25. Hausser G, Ludewig B, Gelderblom HR, Tsunetsugu-Yokota Y, Akagawa K, Meyerhans A (1997) Monocyte-derived dendritic cells represent a transient stage of differentiation in the myeloid lineage. Immunobiol 197:534–542

    Article  CAS  Google Scholar 

  26. Morse MA, Zhou LJ, Tedder TF, Lyerly HK, Smith C (1997) Generation of dendritic cells in vitro from peripheral blood mononuclear cells with granulocyte/macrophage-colony stimulating factor, interleukin-4 and tumor necrosis factor-α for use in cancer immunotherapy. Ann Surg 226:6–16

    Article  PubMed  CAS  Google Scholar 

  27. Chapuis F, Rosenzwajg M, Yagello M, Ekman M, Biberfeld P, Gluckman JC (1997) Differentiation of human dendritic cells from monocytes in vitro. Eur J Immunol 27:431–441

    Article  PubMed  CAS  Google Scholar 

  28. Pettit AR, Quinn C, MacDonald KPA, et al (1997) Nuclear localization of RelB is associated with effective antigen-presenting cell function. J Immunol 159:3681–3691

    PubMed  CAS  Google Scholar 

  29. Brocker T (1997) Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class-II-expressing dendritic cells. J Exp Med 186:1223–1232

    Article  PubMed  CAS  Google Scholar 

  30. De Becker G, Moulin V, Van Mechelen M, et al (1997) Dendritic cells and macrophages induce the development of distinct T helper cell populations in vivo. Adv Exp Med Biol 417:369–373

    PubMed  Google Scholar 

  31. Gebhard F, Rösch M, Helm M, et al (1997) Is the activity of soluble CD14 enhanced following major trauma? Arch Surg 132:1116–1120

    PubMed  CAS  Google Scholar 

  32. Pellegrini JD, Puyana JC, Lapchak P, Kodys K, Miller-Graziano CL (1996) A membrane TNFα/TNFR ratio correlates to MOD score and mortality. Shock 6:389–396

    Article  PubMed  CAS  Google Scholar 

  33. Miller-Graziano CL, Szabo G, Kodys K, Griffey K (1990) Aberrations in post-trauma monocyte populations: Role in septic shock syndrome. J Trauma 30 (suppl 12): S86–S97

    Article  PubMed  CAS  Google Scholar 

  34. Ziegler-Heitbrock HWL (1996) Heterogeneity of human blood monocytes: the CD14 + CD16 +f-subpopulation. Immunol Today 17:424–428

    Article  PubMed  CAS  Google Scholar 

  35. Lugering N, Kucharzik T, Lugering A, et al (1997) Importance of combined treatment with IL-10 and IL-4, but not IL-13, for inhibition of monocyte release of the Ca2+ binding protein MRP8/14. Immunology 91:130–134

    Article  PubMed  CAS  Google Scholar 

  36. Roth J, Teigelkamp ST, Wilke M, Grun L, Tummler B, Sorg C (1992) Complex pattern of the myelomonocytic differentiation antigens MRP8 and MRP 14 during chronic airway inflammation. Immunobiol 186:304–314

    Article  CAS  Google Scholar 

  37. Grage-Griebenow E, Flad HD, Ernst M (1996) Feγ receptor 1 (CD64)-negative human monocytes are potent accessory cells in viral antigen-induced T cell activation and exhibit high IFN-γ producing capacity. J Leuk Biol 60:389–396

    CAS  Google Scholar 

  38. Lentsch AB, Shanley TP, Sarma V, Ward PA (1997) In vivo suppression of NF-κB and preservation of IκBα by interleukin-10 and interleukin-13. J Clin Invest 100:2443–2448

    Article  PubMed  CAS  Google Scholar 

  39. Bayon Y, Alonso A, Crespo MS (1997) Stimulation of Fey receptor in rat peritoneal macrophages induces the expression of nitric oxide synthase and chemokines by mechanisms showing different sensitivities to antioxidants and nitric oxide donors. J Immunol 159: 887–894

    PubMed  CAS  Google Scholar 

  40. Agostini C, Zambello R, Trentin L, et al (1995) Expression of TNF receptors by T cells and membrane TNF-α by alveolar macrophages suggests a role for TNF-α in regulation of the local immune response in the lung of HIV-1 infected patients. J Immunol 154:2928–2938

    PubMed  CAS  Google Scholar 

  41. Szabo G, Miller-Graziano CL, Wu JY, Takayama T, Kodys K (1990) Differential tumor necrosis factor production by human monocyte subsets. J Leukoc Biol 47:206–216

    PubMed  CAS  Google Scholar 

  42. Ho WZ, Kaufman D, Uvaydova M, Douglas SD (1996) Substance P augments interleukin-10 and tumor necrosis factor-a release by human cord blood monocytes and macrophages. J Neuroimmunol 71:73–80

    Article  PubMed  CAS  Google Scholar 

  43. Bost KL (1995) Quantification of macrophage-derived substance P receptor mRNA using competitive polymerase chain reaction. In: Sharp B (ed) The brain: Immune axis and substance abuse. Plenum press, New York, pp 219–223

    Chapter  Google Scholar 

  44. Bozic CR, Lu B, Hopken UE, Gerard C, Gerard N (1996) Neurogenic amplification of immune complex inflammation. Science 272:1722–1724

    Article  Google Scholar 

  45. Durden DL, Kim HM, Galore B, Liu Y (1995) The FcyRI receptor signals through the activation of hck and MAP kinase. J Immunol 154:4039–4047

    PubMed  CAS  Google Scholar 

  46. Blondin C, Dur AL, Cholley B, Caroff M, Haeffner-Cavaillon N (1997) Lipopolysaccharide complexed with soluble CD 14 binds to normal human monocytes. Eur J Immunol 156: 430–433

    Google Scholar 

  47. Zarewych DM, Kindzelskii AL, Todd RF III, Petty HR (1996) LPS induces CD 14 association with complement receptor type 3, which is reversed by neutrophil adhesion. J Immunol 156:430–433

    PubMed  CAS  Google Scholar 

  48. Wang B, Fujisawa H, Zhuang L, et al (1997) Depressed Langerhan’s cell migration and reduced contact hypersensitivity response in mice lacking TNFG receptor p75. J Immunol 159:6148–6155

    PubMed  CAS  Google Scholar 

  49. Peschon JJ, Torrance DS, Stocking KL, et al (1998) TNF receptor-deficient mice reveal divergent roles for p55 and p75 in several models of inflammation. J Immunol 160:943–952

    PubMed  CAS  Google Scholar 

  50. Le Hir M, Bluethmann H, Kosco-Vilbois MH, et al (1996) Differentiation of follicular dendritic cells and full antibody responses require tumor necrosis factor receptor-1 signaling. J Exp Med 183:2326–2372

    Google Scholar 

  51. Vremec D, Shortman K (1997) Dendritic cell subtypes in mouse lymphoid organs. Crosscorrelation of surface markers, changes with incubation, and differences among thymus, spleen and lymph nodes. J Immunol 159:565–573

    PubMed  CAS  Google Scholar 

  52. Kronin V, Süss G, Winkel K, Shortman K (1997) The regulation of T cell responses by a sub-population of CD8+DEC205+ murine dendritic cells. Adv Exp Med Biol 417:239–248

    PubMed  CAS  Google Scholar 

  53. Triozzi PL, Aldrich W (1997) Phenotypic and functional differences between human dendritic cells derived in vitro from hematopoietic progenitors and from monocytes/macrophages. J Leukoc Biol 61:600–608

    PubMed  CAS  Google Scholar 

  54. Salomon B, Cohen JL, Masurier C, Klatzmann D (1998) Three populations of mouse lymph node dendritic cells with different origins and dynamics. J Immunol 160:708–711

    PubMed  CAS  Google Scholar 

  55. Winkel KD, Kronin V, Krummel MF, Shortman K (1997) The nature of the signals regulating CD8 T cell proliferative responses to DC8α+ or CD8α+ dendritic cells. Eur J Immunol 27: 3350–3359

    Article  PubMed  CAS  Google Scholar 

  56. Josien R, Heslan M, Soulillou JP, Cuturi MC (1997) Rat spleen dendritic cells express natural killer cell receptor protein 1 (NKR-Pl) and have cytotoxic activity to select targets via Ca2+ dependent mechanism. J Exp Med 186:467–472

    Article  PubMed  CAS  Google Scholar 

  57. Lu L, Qian S, Hershberger P, et al (1997) Blocking of the B7-CD28 pathway increases apoptosis induced in activated T cells by in vitro-generated CD95L (FasL) positive dendritic cells. Transplant Proc 29:1094–1095

    Article  PubMed  CAS  Google Scholar 

  58. Sousa CRE, Hieny S, Scharton-Kersten T, et al (1997) In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J Exp Med 186:1819–1829

    Article  Google Scholar 

  59. McLellan AD, Sorg RV, Fearnley DB, et al (1997) T lymphocyte mediated regulation of costimulator molecule expression on human dendritic cells. Adv Exp Med Biol 417:203–206

    PubMed  CAS  Google Scholar 

  60. Bjorck P, Banchereau J, Flores-Romo L (1997) C ligation counteracts Fas-induced apoptosis of human dendritic cells. Int Immunol 9:365–372

    Article  PubMed  CAS  Google Scholar 

  61. Schuler G, Romani N (1997) Generation of mature dendritic cells trom human blood — An improved method with special regard to clinical applicability. Adv Exp Med Biol 417:7–13

    PubMed  CAS  Google Scholar 

  62. Wong TC, Yant S, Harder BJ, Korte-Sarfaty J, Hirano A (1997) The cytoplasmic domains of complement regulatory protein CD46 interact with multiple kinases in macrophages. J Leukoc Biol 62:892–900

    PubMed  CAS  Google Scholar 

  63. Bhardwaj N (1997) Interactions of viruses with dendritic cells: A double-edged sword. J Exp Med 186:795–799

    Article  PubMed  CAS  Google Scholar 

  64. Szabo G, Kodys K, Miller-Graziano CL (1991) Elevated monocyte interleukin-6 (IL-6) production in immunsuppressed trauma patients. II. Down regulation by IL-4. J Clint Immunol 11:336–344

    Article  CAS  Google Scholar 

  65. Arrighi JF, Tropia L, Kindler V, Hausser C (1998) Involvement of p38 MAP kinase in the maturation of human blood-derived dendritic cells. J Interferon Cytokine Res 18:119 (abst)

    Google Scholar 

  66. Watts C (1997) Inside the gearbox of the dendritic cell. Nature 388:724–725

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miller-Graziano, C.L., De, A.K., Kodys, K. (2002). Trauma Mediators Favor Differentiation of Monocytes to Macrophage Rather Than to Dendritic Cells. In: Marshall, J.C., Cohen, J. (eds) Immune Response in the Critically Ill. Update in Intensive Care Medicine, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57210-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57210-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42589-2

  • Online ISBN: 978-3-642-57210-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics