Amplification of Nucleic Acids by Polymerase Chain Reaction: Overview on Principles and Applications

  • Arndt Rolfs
  • Ulrich Finckh
  • Peter Bauer
Part of the Springer Lab Manuals book series (SLM)


The polymerase chain reaction (PCR) is a powerfulin vitromethod in molecular biology for selective, highly specific and exceptionally efficient amplification of nucleic acid sequences. In the 10 years since the first publication on PCR (Saiki et al., 1985) this method has grown to rival in popularity traditional microbiological, genetic and technical procedures for cloning, sequencing, gene detection and related procedures. Furthermore, in the meantime PCR and all of its different applications are rapid and convenient alternatives to traditional procedures such as blotting technologies, conventional hybridization and molecular cloning. Initially, PCR was a rather complex and tricky generic procedure applied to basic research problems in molecular biology. It has developed into a simple, multipurpose procedure more or less optimized for diverse applications in nearly every biological discipline and commercial area. There are frequent instances of PCR techniques having passed into the service laboratory environment. These service laboratories are providing a broad range of diagnostic tests mainly covering medical and forensic applications, but also environmental, agricultural and veterinary topics.


Polymerase Chain Reaction Polymerase Chain Reaction Product Polymerase Chain Reaction Amplification Polymerase Chain Reaction Reaction Polymerase Chain Reaction Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akane A, Shiono H, Matsubara K, Nakamura H, Hasegawa M, Kagawa M. Purificaton of forensic specimens for the polymerase chain reaction (PCR) analysis. J Forensic Sci 1993, 38: 691–701PubMedGoogle Scholar
  2. Barnes WM. PCR amplification of up to 35-kb DNA with high fidelity and high yield from kbacteriophage templates. Proc Natl Acad Sci USA 1994, 91: 2216–2220PubMedCrossRefGoogle Scholar
  3. Bauer P, Rolfs A, Regitz-Zagrosek V, Hildebrand A, Fleck E. MMLV reverse transcriptase creates PCR artifacts after effective DNase I digestion of purified RNA. BioTechniques1997, 22: 1128–1132PubMedGoogle Scholar
  4. Becker Y, Darai G (eds.). PCR: protocols for diagnosis of human and animal virus dis-ease. Springer Verlag, Berlin, Heidelberg, New York, 1995 (ISBN 3–540–58899-X)Google Scholar
  5. Cheng S, Fockler C, Barnes WM, Higuchi R. Effective amplification of long targets from cloned inserts and human genomic DNA. Proc Natl Acad Sci USA 1994, 91: 5695–5699PubMedCrossRefGoogle Scholar
  6. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidium thio-cyanate-phenol-chloroform extration. Anal Biochem 1987, 162: 156–169PubMedCrossRefGoogle Scholar
  7. Clewley JP (ed.). The polymerase chain reaction (PCR) for human viral diagnosis. CRCPress, Boca Raton, Ann Arbor, 1995 (ISBN 0–8493–0–8493)Google Scholar
  8. Dieffenbach CW, Dveksler GS (eds.). PCR primer: a laboratory manual. CSHL Press, New York, 1995 (ISBN 0–87969–0–87969)Google Scholar
  9. Dutton CM, Paynton C, Sommer SS. General method for amplifying regions of very high G+C content. Nucl Acids Res 1993, 21: 2953–2954PubMedCrossRefGoogle Scholar
  10. Ehrlich GD, Greenberg SJ (eds.). PCR-based diagnostics in infectious disease. Blackwell Scientific Publications, Cambridge, Oxford, 1994 (ISBN 0–86542–0–86542)Google Scholar
  11. Finckh U, Sander T, Rommelspacher H, Schmidt LG, Rolfs A. Allele-specific PCR for simultaneous amplification of both alleles of a deletion polymorphism in intron 6 of the human dopamine 2 receptor gene (DRD2). DNA Sequence 1996, 6: 87–94PubMedGoogle Scholar
  12. Finckh U, Seeman P, von Widdern 0, Rolfs A. Simple PCR amplification of the entire glucocerebrosidase gene (GBA) coding region for diagnostic sequence analysis. DNA Sequence, 1998, 8: 349–356PubMedGoogle Scholar
  13. Griffin HG, Griffin AM (eds.). PCR technology - current innovations. CRC Press, Boca Raton, Ann Arbor, 1994 (ISBN 0–8493–0–8493)Google Scholar
  14. Holodniy M, Kim S, Katzenstein D, Konrad M, Groves E, Merigan TC. Inhibition of human immunodeficiency virus gene amplification by heparin. J Clin Microbiol 1991, 29: 676–679PubMedGoogle Scholar
  15. Kalinina O, Lebedeva I, Brown J, Silver J. Nanoliter scale PCR with TaqMan detection. Nucleic Acids Res 1997, 25: 1999–2004PubMedCrossRefGoogle Scholar
  16. Lassner D, Pustowoit B, Rolfs A (eds.). Modern applications of DNA amplification tech-niques - problems and new tools. Plenum Press, New York, 1997 (ISBN 0–306–0–306)Google Scholar
  17. McPherson MJ, Hames BD, Taylor GR (eds.). PCR 2 - a practical approach. IRL Press,Oxford, New York, 1995 (ISBN 0–19–0–19)Google Scholar
  18. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988, 16: 1215PubMedCrossRefGoogle Scholar
  19. Morris T, Robertson B, Gallagher M. Rapid reverse transcription-PCR detection of hepatitis C virus RNA in serum by using the TaqMan fluorogenic detection system. J Clin Microbiol 1996, 34: 2833–2936Google Scholar
  20. Mullis KB, Ferré F, Gibbs RA (eds.). The polymerase chain reaction. Birkhäuser, Boston, Basel, Berlin. 1994 (ISBN 0–8176–0–8176)Google Scholar
  21. Newton CR (ed.). PCR - essential data. Wiley Press, Chichester, 1995 (ISBN 0–47195222–2)Google Scholar
  22. Nuovo GJ. PCRin situhybridization. Raven Press, New York, 1994, 2nd edition (ISBN 0–7817–0183-X)Google Scholar
  23. Persing DH (ed.). PCR protocols fo emerging infectious diseases. A supplement to: Diagnostic molecular microbioloy: principles and applications. ASM Press, Washington, 1996 (ISBN 1–55581–1–55581)Google Scholar
  24. Rolfs A, Schuller I, Finckh U, Weber-Rolfs I. PCR: clinical diagnostics and research. Springer, Berlin, Heidelberg, 1992Google Scholar
  25. Rolfs A, Weber-Rolfs I, Finckh U (eds.). Methods in DNA amplification. Plenum Press, New York, 1994 (ISBN 0–306–0–306)Google Scholar
  26. Saiki RK, Scharf S, Fallona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. Enzymatic amplication of ß-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1995, 230: 487–491Google Scholar
  27. Sarkar G (ed.). PCR in neuroscience. Methods in neuroscience, PM Conn (Eds.), Vol. 26. Academic Press, San Diego, New York, 1995 (ISBN 0–12–0–12)Google Scholar
  28. Schuchard M, Sarkar G, Ruesink T, Spelsberg T C. Two step “hot” PCR amplification of GC-rich avianc-mycsequences. BioTechniques 1993, 14: 390–394PubMedGoogle Scholar
  29. Taylor AC. Titration of heparinase for removel of the PCR-inhibitory effect of heparin in DNA samples. Mol Ecol 1997, 6: 383–385PubMedCrossRefGoogle Scholar
  30. Vandevyver C, Motmans K, Raus J. Quantificaton of cytokine mRNA expression by RTPCR and electrochemiluminescence. Genome Research 1995, 5: 195–201PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Arndt Rolfs
    • 1
  • Ulrich Finckh
    • 2
  • Peter Bauer
    • 3
  1. 1.Klinik für Neurologie und PolikliniMedizinische Fakultat,Zentrum für Nervenheilkunde,Gehsheimer StrGermany
  2. 2.Institut für HumangenetikUniversitätsklinikum EppendorfHamburgGermany
  3. 3.Institut fur HumangenetikUniversitatsklinikum EppendorfHamburgGermany

Personalised recommendations