Advertisement

Molecular biology and serodiagnostics of Chlamydia pneumoniae — potential way to a vaccine

  • G. Christiansen
  • A. S. Madsen
  • T. Boesen
  • K. Hjernø
  • L. Daugaard
  • K. Knudsen
  • P. Mygind
  • S. Birkelund
Conference paper

Abstract

In Chlamydia, the obligate intracellular human pathogen with a unique biphasic life cycle, surface structures are of importance for induction of uptake in host cells, for protection of Chlamydiae at the extracellular stage, and as immunogens to which the host’s humoral immune response is directed. In contrast to C. trachomatis, in which a major immunogen is the surface-localized major outer membrane protein (MOMP) [1], this protein is non-immunogenic in C. pneumoniae infections [2]. C. pneumoniae causes upper respiratory tract infections [3], pneumonia, and is suspected to playa role in the development of atherosclerosis [4, 5]. Proteins that contain only conformational epitopes cover the surface of C. pneumoniae [6]. We have previously characterized a gene family of at least four members that encodes surface-localized proteins [7, 8]. We obtained the clones by screening an expression library with an antibody (pAbdOmc) generated against purified, SDS-denatured C. pneumoniae outer membrane complex (Omc) proteins [9], hereby obtaining antibodies to linear epitopes that in native Omc were nonimmunogenic [7]. By using antibodies generated to both linear and conformational epitopes of various parts of the recombinant proteins, we showed (i) that the proteins were the 97–99 kDa Omc proteins not present in C. trachomatis Omc [6]; (ii) that the 97-99 kDa proteins migrated as 73 kDa in unheated samples for SDSPAGE; (iii) that these proteins were the major immunogens in experimentally infected mice; and (iv) that the proteins were present on the surface of C. pneumoniae [7].

Keywords

Chlamydia Infection Human Serum Sample Conformational Epitope Major Outer Membrane Protein Ninth International Symposium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caldwell HO, Schachter J. (1982) Antigenic analysis of the major outer membrane protein of Chlamydia spp. Infect Immun 35: 1024–1031PubMedGoogle Scholar
  2. 2.
    Campbell LA, Kuo CC, Grayston JT. (1990) Structural and antigenic analysis of Chlamydia pneumoniae. Infect Immun 58: 93–97PubMedGoogle Scholar
  3. 3.
    Grayston JT, Kuo CC, Wang S, Altman J. (1986) A new Chlamydia psittaci strain, TWAR, isolated in acute respiratory tract infections. N Engl J Med 315: 161–168PubMedCrossRefGoogle Scholar
  4. 4.
    Kuo CC, Grayston JT, Campbell LA, Goo YA, Wissler RW, Benditt EP. (1995) Chlamydia pneumoniae (TWAR) in coronary arteries of young adults (15-34 years old). Proc Natl Acad Sci USA 92: 6911–6914Google Scholar
  5. 5.
    Jackson LA, Campbell LA, Kuo CC, Rodrigues DI, Lee A, Grayston JT. (1997) Isolation of Chlamydia pneumoniae from a carotid endarterectomy specimen. J Infect Dis 176: 292–295PubMedCrossRefGoogle Scholar
  6. 6.
    Christiansen G, Ostergaard L, Birkelund S. (1997) Molecular biology of the Chlamydia pneumoniae surface. Scand J Infect Dis Suppl 104: 5–10PubMedGoogle Scholar
  7. 7.
    Knudsen K, Madsen AS, Mygind P, Christiansen G, Birkelund S. (1999) Identification of two novel genes encoding 97-to 99-kilodalton outer membrane proteins of Chlamydia pneumoniae. Infect Immun 67: 375–383PubMedGoogle Scholar
  8. 8.
    Knudsen K, Madsen AS, Mygind P, Christiansen G, Birkelund S. (1998) In: Stephens RS, Byrne GI, Christiansen G, Clarke IN, Grayston JT, Rank RG, Ridgway GL, Saikku P, Schachter J, Stamm WE (eds) Chlamydia infections. Proceedings of the Ninth International Symposium on Human Chlamydia Infections. University of California, San Franeisco, pp 267–270Google Scholar
  9. 9.
    Melgosa MP, Kuo CC, Campbell LA. (1993) Outer membrane complex proteins of Chlamydia pneumoniae. FEMS Microbiol Lett 112: 199–204PubMedCrossRefGoogle Scholar
  10. 10.
    Stephens R: http://chlamydia-www.berkeley.edu:4231Google Scholar
  11. 11.
    Grimwood J, Mitchell W, Stephens RS. (1998) In: Stephens RS, Byrne GI, Christiansen G, Clarke IN, Grayston JT, Rank RG, Ridgway GL, Saikku P, Schachter J, Stamm WE (eds) Chlamydia infections. Proceedings of the Ninth International Symposium on Human Chlamydia Infections. University of California, San Francisco, pp 263–266Google Scholar
  12. 12.
    Birkelund S, Knudsen K, Madsen AS, Falk E, Mygind P, Christiansen G. (1998) In: Stephens RS, Byrne GI, Christiansen G, Clarke IN, Grayston JT, Rank RG, Ridgway GL, Saikku P, Schachter J, Stamm WE (eds) Chlamydia infections. Proceedings of the Ninth International Symposium on Human Chlamydia Infections. University of California, San Francisco, pp 275–278Google Scholar
  13. 13.
    Campbell LA, Kuo CC, Wang SP, Grayston JT. (1990) Serological response to Chlamydia pneumoniae infection. J Clin Microbiol 28: 1261–1264PubMedGoogle Scholar
  14. 14.
    Iijima Y, Miyashita N, Kishimoto T, Kanamoto Y, Soejima R, Matsumoto A. (1994) Characterization of Chlamydia pneumoniae species-specific proteins immunodorninant in humans. J Clin Microbiol 32: 583–588PubMedGoogle Scholar
  15. 15.
    Jantos CA, Heck S, Roggendorf R, Sen-Gupta M, Heegemann J. (1997) Antigenic and molecular analyses of different Chlamydia pneumoniae strains. J Clin Microbiol 35: 620–623PubMedGoogle Scholar
  16. 16.
    Kutlin A, Roblin PM, Hammerschlag MR. (1998) Antibody response to Chlamydia pneumoniae infection in children with respiratory illness. J Infect Dis 177: 720–724PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • G. Christiansen
  • A. S. Madsen
  • T. Boesen
  • K. Hjernø
  • L. Daugaard
  • K. Knudsen
  • P. Mygind
  • S. Birkelund

There are no affiliations available

Personalised recommendations