Skip to main content

Chlamydia pneumoniae, APOE genotype, and Alzheimer’s disease

  • Conference paper
Chlamydia pneumoniae and Chronic Diseases

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative condition associated with atrophy and death of nerve cells in affected brain regions. This disease is relatively common, affecting 4 million or more individuals in the United States alone [1]. AD occurs in two relatively distinct forms: an early-onset, familial form and a more common late-onset, sporadic form. Incidence of the latter increases with increasing age, and AD is considered to be the most significant single cause of senile dementia. Indeed, a number of studies have indicated that at least half the total number of cases of dementia in the elderly are attributable to AD [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Keefover RW. (1996) The clinical epidemiology of Alzheimer’s disease. Neurol Clin 14: 337–351

    Article  PubMed  CAS  Google Scholar 

  2. Evans DA, Funkenstein HH, Albert MS, et al. (1989) Prevalence of Alzheimer’s disease in a community population of older persons. JAMA 262: 2551–2556

    Article  PubMed  CAS  Google Scholar 

  3. Lee VM-Y, Balin BJ, Otvos L, Trojanowski JQ. (1991) A68-a major subunit of paired helical filaments and derivatized forms of normal tau. Science 251: 675–679

    Article  PubMed  CAS  Google Scholar 

  4. Alonso A, Grundke-Iqbal I, Iqbal K. (1996) Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nature Med 2: 783–787

    Article  PubMed  CAS  Google Scholar 

  5. Wang J-Z, Grundke-Iqbal I, Iqbal K. (1996) Glycosylation of microtubule-associated protein tau: an abnormal post-translational modification in Alzheimer’s disease. Nature Med 2: 871–875

    Article  PubMed  CAS  Google Scholar 

  6. Goedert M. (1993) Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Trends Neurosci 16: 460–465

    Article  PubMed  CAS  Google Scholar 

  7. Schellenberg GD. (1995) Genetic dissection of Alzheimer’s disease, a heterogeneous disorder. Proc Natl Acad Sci (USA) 92: 8552–8559

    Article  CAS  Google Scholar 

  8. Selkoe DJ, Podlisny MD, et al. (1988) β-amyloid precursor protein of AD occurs at 110-to 135-kilodalton membrane-associated proteins in neural and nonneural tissues. Proc Natl Acad Sci (USA) 85: 7341–7345

    Article  CAS  Google Scholar 

  9. Yankner BA. (1996) New clues to Alzheimer’s disease: unraveling the roles of amyloid and tau. Nature Med 2: 850–852

    Article  PubMed  CAS  Google Scholar 

  10. Scheuner D, Eckman C, Jensen M, et al. (1996) Secreted amyloid β-protein similar to that in the senile plaques of AD is increased in vivo by the presenilin 1 and 2 mutations linked to familial AD. Nature Med 2: 864–870

    Article  PubMed  CAS  Google Scholar 

  11. Ray WJ, Ashall F, Goate AM. (1998) Molecular pathogenesis of sporadic and familial forms of Alzheimer’s disease. Mol Med Today 4: 151–157

    Article  PubMed  CAS  Google Scholar 

  12. Roses AD. (1996) Apolipoprotein E alleles as risk factor in Alzheimer’s disease. Annu Rev Med 47: 387–400

    Article  PubMed  CAS  Google Scholar 

  13. Itzhaki RJ, Lin WR, Shang D, et al. (1997) Herpes simplex virus type 1 in brain and risk of Alzheimer’s disease. Lancet 349: 241–244

    Article  PubMed  CAS  Google Scholar 

  14. Boyles JK, Pitas RE, Wilson E, et al. (1985) ApoE associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. J Clin Invest 76: 1501–1513

    Article  PubMed  CAS  Google Scholar 

  15. Haan J, Van Broeckhoven C, van Duijn CM, et al. (1994) The apolipoprotein E £4 allele does not influence the clinical expression of the amyloid precursor protein gene codon 693 or 692 mutations. Ann Neurol 36: 434–437

    Article  PubMed  CAS  Google Scholar 

  16. Strittmatter WJ, Weisgraber KH, Huang DY, et al. (1993) Binding of human apolipoprotein E to synthetic amyloid ~ peptide: isoform-specific effects and implications for late-onset Alzheimer’s disease; essentially all Alzheimer’s patients also show a severe deficit in cholinergic nerve function Alzheimer disease. Proc Natl Acad Sci (USA) 90: 8098–8102

    CAS  Google Scholar 

  17. Grayston JT. (1992) Chlamydia pneumoniae, strain TWAR pneumonia. Annu Rev Med 43: 317–323

    Article  PubMed  CAS  Google Scholar 

  18. Grayston JT, Campbell LA, Kuo CC, et al. (1990) A new respiratory tract pathogen: Chlamydia pneumoniae strain TWAR. J Infect Dis 161: 618–625

    Article  PubMed  CAS  Google Scholar 

  19. Von Hertzen LC. (1998) Chlamydia pneumoniae and its role in chronic obstructive pulmonary disease. Ann Med 30: 27–37

    Article  Google Scholar 

  20. Schumacher HR, Gérard HC, Arayssi T, et al. (1999). Lower prevalence of Chlamydia pneumoniae DNA compared with Chlamydia trachomatis DNA in synovial tissue of arthritis patients. Arthritis Rheum 42: 1889–1893

    Article  PubMed  Google Scholar 

  21. Kuo CC, Grayston JT, Campbell LA, et al. (1995) Chlamydia pneumoniae (TWAR) in coronary arteries of young adults (15–34 years old). Proc Natl Acad Sci (USA) 92: 6911–6914

    Google Scholar 

  22. Campbell LA, O’Brien ER, Cappuccio AL, et al. (1995) Detection of Chlamydia pneumoniae TWAR in human coronary atherectomy tissues. J Infect Dis 172: 585–588

    Article  PubMed  CAS  Google Scholar 

  23. Kalayoglu MV, Byrne GI. (1998) Induction of macrophage foam cell formation by Chlamydia pneumoniae. J Infect Dis 177: 725–729

    Article  PubMed  CAS  Google Scholar 

  24. Leinonen M. (1993) Pathogenetic mechanisms and epidemiology of Chlamydia pneumoniae. Eur Heart J 14: 57–61

    Article  PubMed  Google Scholar 

  25. Ward ME. (1995) The immunobiology and immunopathology of chlamydial infections. APMIS 103: 769–796

    Article  PubMed  CAS  Google Scholar 

  26. Chen S, Frederickson RC, Brunden KR. (1996) Neuroglial-mediated immunoinflammatory responses in Alzheimer’s disease: complement activation and therapeutic approaches. Neurobiol Aging 17: 781–787

    Article  PubMed  CAS  Google Scholar 

  27. Balin BJ, Gérard HC, Arking EJ, et al. (1998) Identification and localization of Chlamydia pneumoniae in the Alzheimer’s brain. Med Microbiol Immunol 187: 23–42

    Article  PubMed  CAS  Google Scholar 

  28. Sriram S, Mitchell W, Stratton C. (1998) Multiple sclerosis association with Chlamydia pneumoniae infection of the CNS. Neurology 50: 571–572

    Article  PubMed  CAS  Google Scholar 

  29. Ordovas JM, Litwack-Klein L, Wilson PWF, et al. (1987) ApoE isoform phenotyping methodology and population frequency with identification of apoE1 and apoE5. J Lipid Res 28: 371–380

    PubMed  CAS  Google Scholar 

  30. Gérard HC, Wang GF, Balin BJ, et al. (1999) Frequency of apolipoprotein E (APOE) allele types in patients with Chlamydia-associated arthritis and other arthritides. Microb Pathog 26: 35–42

    Article  PubMed  Google Scholar 

  31. Bolton CF, Young GB, Zochodne DW. (1993) The neurological consequences of sepsis. Ann Neurol 33: 94–100

    Article  PubMed  CAS  Google Scholar 

  32. Mann DM, Tinkler AM, Yates PO. (1983) Neurological disease and herpes simplex virus. An immunohistochemical study. Acta Neurol 60: 24–28

    Article  CAS  Google Scholar 

  33. Pogo BG, Casals J, Elizan TS. (1987) A study of viral genomes and antigens in brains of patients with Alzheimer’s disease. Brain 110: 907–915

    Article  PubMed  Google Scholar 

  34. Mathews WB. (1986) Unconventional virus infection and neurological disease. Neuropath Appl Neurobiol 12: 111–116

    Article  Google Scholar 

  35. Nicoll JAR, Roberts GW, Graham DI. (1995) Apolipoprotein E £4 allele is associated with deposition of amyloid β-protein following head injury. Nature Med 1: 135–137

    Article  PubMed  CAS  Google Scholar 

  36. Moazed TC, Kuo CC, Patten DL, et al. (1996) Experimental rabbit models of Chlamydia pneumoniae infection. Am J Pathol 148: 667–676

    PubMed  CAS  Google Scholar 

  37. Breitner JC. (1996) The role of anti-inflammatory drugs in the prevention and treatment of Alzheimer’s disease. Annu Rev Med 47: 401–411

    Article  PubMed  CAS  Google Scholar 

  38. Lue L-H, Brachova L, Civin WH, Rogers J. (1996) Inflammation, Aβ deposition, and neurofibrillary tangle formation as correlates of Alzheimer’s disease neurodegeneration. J Neuropathol Exp Neurol 55: 1083–1088

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hudson, A.P., Gérard, H.C., Whittum-Hudson, J.A., Appelt, D.M., Balin, B.J. (2000). Chlamydia pneumoniae, APOE genotype, and Alzheimer’s disease. In: L’age-Stehr, J. (eds) Chlamydia pneumoniae and Chronic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57195-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57195-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41136-9

  • Online ISBN: 978-3-642-57195-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics