Advertisement

The Tumor Necrosis Factor-α Converting Enzyme

  • J. D. Becherer
  • M. H. Lambert
  • R. C. Andrews
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 140)

Abstract

Tumor necrosis factor (TNF)-α is a potent pro-inflammatory agent produced primarily by activated monocytes and macrophages (VASSALLI 1992). Originally thought to be a selective anti-tumor agent (OLD 1985) and a contributor to cachexia in cancer patients (BEUTLER and CERAMI 1988), this protein, along with interleukin (IL)-1α, is recognized as a major inflammatory cytokine. Moreover, the production of TNF-α is not restricted to monocytes and macrophages. Other cellular sources of TNF-α include lymphocytes, mast cells, polymorphonuclear cells, astrocytes and microglial cells (SUNG et al. 1988; SAWADA et al. 1989; GORDON and GALLI 1990; DJEU et al. 1990; CHUNG and BENVENISTE 1990). Increasing evidence suggests that overproduction of TNF- αis a major contributor to diverse pathologies such as septic shock, graft rejection, human immunodeficiency virus (HIV) infection and rheumatoid arthritis (RA) (TRACY et al. 1986; PIGUET et al. 1987; PETERSON et al. 1992; WILLIAMS et al. 1992).

Keywords

Acetohydroxamic Acid Disintegrin Domain Cysteine Switch Hydroxamate Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews RC, Andersen MW, Stanford JB, Bubacz DG, Chan JH, Cowan DJ, Gaul MD, McDougald DL, Musso DL, Rabinowitz, MH, Wiethe, RW (1998) Preparation of peptidyl reverse hydroxamate derivatives as metalloprotease inhibitors. PCT Int Appl WO 9838179.Google Scholar
  2. Bailey S, Bolognese B, Buckle DR, Faller A, Jackson S, Louis-Flamberg P, McCord M, Mayer RJ, Marshall LA, Smith DG (1998). Selective inhibition of low affinity IgE receptor (CD23) processing. Bioorg Med Chem Lett 8:29–34.PubMedCrossRefGoogle Scholar
  3. Barberia JT, Sweeney FJ, Carty TJ (1996) Development of a cell — based assay for TNF-α release which avoids transcription and translation steps. Poster Presentation, Fifth International Conference, Inflammation Research Association, October 1996. Hershey, PA, USA. Abstract P1.Google Scholar
  4. Beckett RP, Whittaker M (1998) Matrix metalloproteinase inhibitors. Expert Opin Ther Pat 8:259–282.CrossRefGoogle Scholar
  5. Beckett RP, Davidson AH, Drummond AH, Huxley P, Whittaker M (1996) Recent advances in matrix metalloproteinase inhibitor research. Drug Discovery Today 1:16–26.CrossRefGoogle Scholar
  6. Beutler B, Cerami A (1988) Tumor necrosis, cachexia, shock, and inflammation: a common mediator. Ann Rev Biochem 57:505.PubMedCrossRefGoogle Scholar
  7. Bird TGC, Barlaam BC, Lambert CMP (1997) Preparation of sulfur-containing aminoacyl hydroxamic acid derivatives as tumor necrosis factor and matrix metalloproteinase inhibitors. PCT Int Appl WO 9742168.Google Scholar
  8. Black RA, Fitzner JN, Sleath PR (1997a) Preparation of peptide derivatives as inhibitors of TNF-α secretion. US 5594106.Google Scholar
  9. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP (1997b) A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature (London) 385:729–733.PubMedCrossRefGoogle Scholar
  10. Black RA, White JM (1998) ADAMs: focus on the protease domain. Curr Op Cell Biol 10:654–659PubMedCrossRefGoogle Scholar
  11. Bluethmann H (1998) Physiological, immunological, and pathological functions of tumor necrosis factor (TNF) revealed by TNF receptor-deficient mice. In: Durum SK, Muegge K (eds) Cytokine Knockouts. Humana Press, New Jersey, p 69.Google Scholar
  12. Brennen FM, Chantry D, Jackson A, Maini R, Feldmann M (1989) Inhibitory effect of TNF-α antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. Lancet 2:244–247.CrossRefGoogle Scholar
  13. Broadhurst MJ, Johnson WH, Walter DS (1999) Preparation of hydroxycarbamoylalkylcarboxylic acid hydrazides as inhibitors of tumor necrosis factor and transforming growth factor release. Deutsches Offenlegungschift DE 19829229.Google Scholar
  14. Buxbaum JD, Liu K, Luo Y, Slack JL, Stocking KL, Peschon JJ, Johnson RS, Castner BJ, Cerretti DP, Black RA (1998) Evidence that tumor necrosis factor-α converting enzyme is involved in regulated α-secretase cleavage of the Alzheimer amyloid protein precursor. J Biol Chem 273:27765–27767.PubMedCrossRefGoogle Scholar
  15. Chu CQ, Field M, Feldman M, Maini R (1991) Localization of tumor necrosis factor α in synovial tissues and at cartilage-pannus junction in patients with rheumatoid arthritis. Arth Rheum 34:1125–1132.CrossRefGoogle Scholar
  16. Chung IY, Benveniste EN (1990) Tumor necrosis factor-α production by astrocytes. Induction by lipopolysaccharide, IFN-γ, and IL-lβ. J. Immunol. 144:2999.PubMedGoogle Scholar
  17. Clements JM, Cossins JA, Wells GMA, Corkill DJ, Helfrich K, Wood LM, Pigott R, Stabler G, Ward GA, Gearing AJH, Miller KM (1997) Matrix metalloproteinase expression during experimental autoimmune encephalomyelitis and effects of a combined matrix metalloproteinase and tumour necrosis factor-α inhibitor. J Neurol 74:85–94.Google Scholar
  18. Cseh K, Beutler B (1989) Alternative cleavage of the cachectin/tumor necrosis factor propeptide results in a larger, inactive form of secreted protein. J Biol Chem 264:16256.PubMedGoogle Scholar
  19. DeCicco CP, Jaffee BD, Copeland R, Jones B, DiMeo T, Gardner T, Collins R, Czerniak P, Nelson D, Magolda R (1996) TNF-c inhibitors in models of inflammation. Eur. Cytokine Netw 7:290.Google Scholar
  20. Decoster E, Vanhaesebroeck B, Vandenabeele P, Grooten J, Fiers W, (1995) Generation and biological characterization of membrane-bound, uncleavable murine tumor necrosis factor. J Biol Chem 270:18473–18478.PubMedCrossRefGoogle Scholar
  21. DiMartino M, Wolff C, High W, Stroup G, Hoffman S, Laydon J, Lee JC, Bertolini D, Galloway WA, Crimmin MJ, Davis M, Davies S (1997) Anti-arthritic activity of hydroxamic acid-based pseudopeptide inhibitors of matrix metalloproteinases and TNF-α processing. Inflammation Res 46:211–215.CrossRefGoogle Scholar
  22. Djeu JY, Serbousek D, Blanchard DK (1990) Release of tumor necrosis factor by human polymorphonuclear leukocytes. Blood 76:1405.PubMedGoogle Scholar
  23. Eugster H-P, Müller M, Le Hir M, Ryffel B (1998) Immunodeficiency of tumor necrosis factor and lymphotoxin-α double-deficient mice. In: Durum SK, Muegge K (eds) Cytokine Knockouts. Humana Press, New Jersey, p 103.Google Scholar
  24. Fox JW, Bjarnason JB (1996) The reprolysins: a family of metalloproteases defined by snake venom and mammalian metalloproteases. In: ai]Hooper NM (ed) Zinc Metalloproteases in Health and Disease. p 47. Taylor and Francis, London.Google Scholar
  25. Gearing AJH, Beckett P, Christodoulou M, Churchill M, Clements J, Davidson AH, Drummond AH, Galloway WA, Gilbert R, Gordon J, Leber T, Mangan M, Miller K, Nayee P, Owen K, Patel S, Thomas W, Wells G, Wood L, Wooley K (1994) Processing of tumor necrosis factor-α precursor by metalloproteinases. Nature (London) 370:555–558.PubMedCrossRefGoogle Scholar
  26. Glaser KB, Pease L, Li J, Morgan DW (1999) Enhancement of the surface expression of tumor necrosis factor alpha (TNF-alpha) but not the p55 TNF-alpha receptor in the THP-1 monocytic cell line by matrix metalloprotease inhibitors. Biochem Pharmacol 57:291–302.PubMedCrossRefGoogle Scholar
  27. Gomis-Ruth FX, Kress LF, Kellermann J, Mayr I, Lee X, Huber R, Bode W (1994) Refined 2.0 A X-ray crystal structure of the snake venom zinc endopeptidase adamalysin II. Primary and tertiary structure determination, refinement, molecular structure and comparison with astacin, collagenase and thermolysin. J Mol Biol 239:513–544.PubMedCrossRefGoogle Scholar
  28. Gonnella NC, Li Y-C, Zhang X, Paris CG (1997) Bioactive conformation of a potent stromelysin inhibitor determined by X-nucleus filtered and multidimensional NMR spectroscopy. Bioorg Med Chem 5:2193–2201.PubMedCrossRefGoogle Scholar
  29. Gordon JR, Galli SJ (1990) Mast cells as a source of both preformed and immunologically inducible TNF-α/cachectin. Nature (London) 346:274.PubMedCrossRefGoogle Scholar
  30. Grams F, Huber R, Kress LF, Moroder L, Bode W (1993) Activation of snake venom metalloproteases by a cysteine switch-like mechanism. FEBS Lett 335:76–80.PubMedCrossRefGoogle Scholar
  31. Hattori K, Hirano T, Ushiyama C, Miyajima H, Yamakawa N, Ebata T, Wada Y, Ikeda S, Yoshino K, Tateno M, Oshimi K, Kayagaki N, Yagita H, Okumura K (1997) A metalloproteinase inhibitor prevents lethal acute graft-versus-host disease in mice. Blood 90:542–548.PubMedGoogle Scholar
  32. Hooper NM (1994) Families of zinc metalloproteases. FEBS Lett 354:1–6.PubMedCrossRefGoogle Scholar
  33. Hooper NM, Karran EH, Turner AJ (1997) Membrane protein secretases. Biochem J 321:265–279.PubMedGoogle Scholar
  34. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha; direct role in obesity-linked insulin resistance. Science 259:87–91.PubMedCrossRefGoogle Scholar
  35. Hotamisligil GS, Spiegelman BM (1994) Tumour necrosis factor α: a key component of the obesity — diabetes link. Diabetes 43:1271–1277.PubMedCrossRefGoogle Scholar
  36. Kim KU, Kwon OJ, Jue D-M (1993) Pro-tumor necrosis factor cleavage enzyme in macrophage membrane/particulate. Immunology 80:134.PubMedGoogle Scholar
  37. Kriegler M, Perez C, DeFay AI, Lu SD (1988) A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 53:45.PubMedCrossRefGoogle Scholar
  38. Lambert MH (1997) Docking Conformationally Flexible Molecules into Protein Binding Sites. in Practical Application of Computer-Aided Drug Design, Charif-son PS, editor, pp 243–303. Marcel-Dekker, New York.Google Scholar
  39. Levin JI, Du Mila T, Venkatesan AM, Nelson FC, Zask A, Gu Y (1998a) The preparation and use of ortho-sulfonamido ary1 hydroxamic acids as matrix metalloproteinase and TACE inhibitors. PCT Int Appl WO 9816503.Google Scholar
  40. Levin JI, Zask A, Gu Y (1998b) Preparation of α-sulfonamido hydroxamic acids as matrix metalloproteinase and TACE inhibitors. PCT Int Appl WO 9816506.Google Scholar
  41. Levin JI, Frances CN (1998) Preparation and use of ortho-sulfonamido heteroaryl hydroxamic acids as matrix metalloproteinase and TACE inhibitors. PCT Int Appl WO 9816520.Google Scholar
  42. Levy DE, Ezrin AM. (1997) Matrix metalloproteinase inhibitor drugs. Emerging Drugs 2:205–230.CrossRefGoogle Scholar
  43. Lum, L, Wong, BR, Josien R, Becherer JD, Erdjument-Bromage H, Schloendorf J, Tempst P, Choi Y, Blobel CP (1999) Evidence for a role of a TNF-α converting enzyme-like protease in the shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival. J Biol Chem 274:13613–13618.PubMedCrossRefGoogle Scholar
  44. Lunn CA, Fan X, Dalie B, Miller K, Zavodny PJ, Narula SK, Lundell D (1997) Purification of ADAM 10 from bovine spleen as a TNF-α convertase. FEBS Lett 400:333–335.PubMedCrossRefGoogle Scholar
  45. MacPherson LJ, Bayburt EK, Capparelli MP, Carroll BJ, Goldstein R, Justice MR, Zhu L, Hu IS, Melton RA, Fryer L, Goldberg R., Doughty JR, Spirito S, Blancuzzi V, Wilson D, O’Byrne EM, Ganu V, Parker DT (1997) Discovery of CGS 27023 A, a non-peptidic, potent, and orally active stromelysin inhibitor that blocks cartilage degradation in rabbits. J Med Chem 40:2525–2532.PubMedCrossRefGoogle Scholar
  46. Maini RN, Breedveld FC, Kalden JR, Smolen JS, Davis D, Macfarlane JD, Antoni C, Leeb B, Elliott MJ, Woody JN, Schaible TF, Feldmann M (1998) Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor α monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum 41:1552–1563.PubMedCrossRefGoogle Scholar
  47. Maskos K, Fernandez-Catalan C, Huber R, Bourenkov GP, Bartunik H, Ellestad GA, Reddy P, Wolfson MF, Rauch CG, Castner BJ, Davis R, Clarke HRG, Petersen M, Fitzner JN, Cerretti DP, March CJ, Paxton RJ, Black RA, Bode W (1998) Crystal structure of the catalytic domain of human tumor necrosis factor-α-converting enzyme. Proc Natl Acad Sci USA 95:3408–3412.PubMedCrossRefGoogle Scholar
  48. McGeehan GM, Becherer JD, Bast RC Jr, Boyer CM, Champion B, Connolly KM, Conway JG, Furdon P, Karp S, Kidao S, McElroy A, Nichols J, Pryzwansky K, Schoenen F, Sekut L, Truesdale A, Verghese M, Warner J, Ways J (1994) Regulation of tumor necrosis factor-α processing by a metalloproteinase inhibitor. Nature (London) 370:558–561.PubMedCrossRefGoogle Scholar
  49. Mohler KM, Sleath PR, Fitzner JN, Cerretti DP, Alderson M, Kerwar SS,Torrance DS, Otten-Evans C, Greenstreet T, Black RA (1994) Protection against a lethal dose of endotoxin by an inhibitor of tumor necrosis factor processing. Nature (London) 370:218–221.PubMedCrossRefGoogle Scholar
  50. Moreland LW, Baumgartner SW, Schiff MH, Tindall EA, Fleischmann RM, Weaver AL, Ettlinger RE, Cohen S, Koopman WJ, Mohler K et al. (1997) Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. New Engl J Med 337:141–147.PubMedCrossRefGoogle Scholar
  51. Morimoto Y, Nishikawa K, Ohash M (1997). KB-R7785, a novel matrix metalloproteinase inhibitor, exerts its antidiabetic effect by inhibiting tumor necrosis factor-α production. Life Sci 61:795–803.PubMedCrossRefGoogle Scholar
  52. Moss ML, Jin S-LC, Becherer JD, Bickett DM, Burkhart W, Chen WJ, Hassler D, Leesnitzer MT, McGeehan G, Milla M, Moyer M, Rocque W, Seaton T, Schoenen F, Warner J, Willard D (1997a) Structural features and biochemical properties of TNF-α converting enzyme (TACE). J Neuroimmunol 72:127–129.PubMedCrossRefGoogle Scholar
  53. Moss ML, Jin S-LC, Milla, ME, Bickett DM, Burkhart W, Carter HL, Chen W-J, Clay WC, Didsbury, JR, Hassler D, Hoffman CR, Kost TA, Lambert MH, Leesnitzer MA, McCauley P, McGeehan G, Mitchell J, Moyer M, Pahel G, Rocque W, Overton LK, Schoenen F, Seaton T, Su J-L, Warner J, Willard D, Becherer JD (1997b) Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-α. Nature (London) 385:733–736.PubMedCrossRefGoogle Scholar
  54. Müller R, Marmenout A, Fiers W (1986) Synthesis and maturation of recombinant human tumor necrosis factor in eukaryotic systems. FEBS Lett. 197:99.PubMedCrossRefGoogle Scholar
  55. Murakami K, Kobayashi F, Ikegawa R, Koyama M, Shintani N, Yoshida T, Nakamura N, Kondo T (1998) Metalloproteinase inhibitor prevents hepatic injury in endotoxemic mice. Eur J Pharmacol 341:105–110.PubMedCrossRefGoogle Scholar
  56. Nantermet PG, Parker DT, Macpherson LJ (1998) Certain alpha-azacycloalkyl substituted arylsulfonamido acetohydroxamic acids, useful as inhibitors of matrixdegrading metalloproteinases and TNF-α converting enzyme. US 5817822.Google Scholar
  57. Niehoerster M, Tiegs G, Schade UF, Wendel A (1990) In vivo evidence for proteasecatalyzed mechanism providing bioactive tumor necrosis factor α. Biochem Pharmacol 40:1601.CrossRefGoogle Scholar
  58. Old LJ (1985) Tumor necrosis factor. Science 230:630.PubMedCrossRefGoogle Scholar
  59. Parker DT (1998) Preparation of α-substituted arylsulfonamido acetohydroxamic acids as tumor necrosis factor inhibitors. US 5770624.Google Scholar
  60. Parker DT, MacPherson LJ, Goldstein R, Justice MR, Zhu LJ, Caparelli M, Whaley LW, Boehm C, O’Byrne EM, Goldberg RL (1994) The development of 27023 A: a novel, potent, and orally active matrix metalloprotease inhibitor. Poster Presentation, Fourth International Conference, Inflammation Research Association, October 1994. White Haven, PA, USA Abstract P73.Google Scholar
  61. Perez C, Albert I, DeFay K, Zachariades N, Gooding L, Kriegler M (1990) A nonsecretable cell surface mutant of tumor necrosis factor (TNF) kills by cell-to-cell contact. Cell 63:251–258.PubMedCrossRefGoogle Scholar
  62. Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, Lee DC, Russell WE, Castner BJ, Johnson RS, Fitzner JN et al (1998) An essential role for ectodomain shedding in mammalian development. Science 282:1281–1284.PubMedCrossRefGoogle Scholar
  63. Peterson PK, Gekker G, Chao CC, Hu S, Edelman C, Balfour HH Jr., Verhoef J (1992) Human cytomegalovirus-stimulated peripheral blood mononuclear cells induce HIV-1 replication via a tumor necrosis factor-a-mediated mechanism. J Clin Invest 89:574.PubMedCrossRefGoogle Scholar
  64. Piguet PF, Grau GE, Allet B, Vassalli P (1987) Tumor necrosis factor/cachectin is an effector of skin and gut lesions of the acute phase of graft-vs.-host disease. J. Exp. Med. 166:1280.PubMedCrossRefGoogle Scholar
  65. Rasmussen HS, Chiodo CA, Hawkins MJ (1998) Phase I trial of marimastat, a novel matrix metalloproteinase inhibitor, administered orally to patients with advanced lung cancer (1998) J Clin Oncol 16:2150–2156.PubMedGoogle Scholar
  66. Roghani M, Becherer JD, Moss ML, Atherton RE, Erdjument-Bromage H, Arribas J, Blackburn KR, Weskamp G, Tempst P, Blobel CP (1999) Metalloprotease-disintegrin MDC9: intracellular maturation and catalytic activity. J Biol Chem 274:3531–3540.PubMedCrossRefGoogle Scholar
  67. Rosendahl M, Ko SC, Long DL, Brewer MT, Rosenzweig B, Hedl E, Anderson L, Pyle SM, Moreland J, Meyers MA, Kohno T, Lyons D, Lichenstein HS, (1997) Identification and characterization of a pro-tumor necrosis factor-α-processing enzyme from the ADAM family of zinc metalloproteases. J Biol Chem 272: 24588–24593.PubMedCrossRefGoogle Scholar
  68. Sawada M, Kondo N, Suzumura A, Marunouchi T (1989) Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res 491:394.PubMedCrossRefGoogle Scholar
  69. Scuderi P (1989) Suppression of human leukocyte tumor necrosis factor secretion by the serine protease inhibitor p-toluenesulfonyl-L-arginine methyl ester (TAME). J Immunol 143:168.PubMedGoogle Scholar
  70. Senn H, Klaus W (1993) The nuclear magnetic resonance solution structure of ftavoridin, an antagonist of the platelet GP Ilb-IIIa receptor. J Mol Biol 232:907–925.PubMedCrossRefGoogle Scholar
  71. Shinbrot E, Moore M (1998) Cooperation between the TNF receptors demonstrated by TNF receptor knockout mice. In: Durum SK, Muegge K (eds) Cytokine Knockouts. Humana Press, New Jersey, p 89.Google Scholar
  72. Shire MG, Muller GW (1998) TNF-α inhibitors and rheumatoid arthritis. Expert Opin Ther Pat 8:531–544.CrossRefGoogle Scholar
  73. Solorzano CC, Ksontini R, Pruitt JH, Hess PJ, Edwards PD, Kaibara A, Abouhamze A, Auffenberg T, Galardy RE, Vauthey JN, Copeland EM, Edwards CK, Lauwers GY, Clare-Salzler M, MacKay SLD, Moldawer LL, Lazarus DD (1997) Involvement of 26-kDa cell-associated TNF-α in experimental hepatitis and exacerbation of liver injury with a matrix metalloproteinase inhibitor. J Immunol 158:414–419.PubMedGoogle Scholar
  74. Spurlino JC, Smallwood AM, Carlton DD, Banks TM, Vavra KJ, Johnson JS, Cook ER, Falvo J, Wahl RC, Pulvino TA, Wendoloski JJ, Smith DL (1994) 1.56Å Structure of mature truncated human fibroblast collagenase. Proteins 19:98–109.PubMedCrossRefGoogle Scholar
  75. Suffys P, Beyaert R, Van Roy F, Fiers W (1988) Involvement of a serine protease in tumor necrosis factor-mediated cytotoxicity. Eur J Biochem 178:257.PubMedCrossRefGoogle Scholar
  76. Sung S, Bjorndahl J, Wang C, Kao H, Fu S (1988) Production of tumor necrosis factor/cachectin by human T cell lines and peripheral blood T lymphocytes stimulated by phorbol myristate acetate and anti-CD3 antibody. J Exp Med 167:937.PubMedCrossRefGoogle Scholar
  77. Tracy KJ, Beutler B, Lowry SF, Merryweather J, Wolpe S, Milsark IW, Hariri RJ, Fahey TJ III, Zentella A, Albert JD, Shires GT, Cerami A (1986) Shock and tissue injury induced by recombinant human cachectin. Science 234:470.CrossRefGoogle Scholar
  78. Utsumi T, Levitan A, Hung M, Klostergaard J (1993) Effects of truncation of human pro-tumor necrosis factor transmembrane domain on cellular targeting. J Biol Chem 268:9511.PubMedGoogle Scholar
  79. Van Wart HE, Birkedal-Hansen B (1990) The cysteine switch: A principle of regulation of metalloprotease activity with potential applicability to the entire matrix metalloprotease gene family. Proc Natl Acad Sci USA 87:5578–5581.PubMedCrossRefGoogle Scholar
  80. Vassalli P (1992) The pathophysiology of tumor necrosis factors. Annu Rev Immunol 10:411.PubMedCrossRefGoogle Scholar
  81. Venkatesan AM, Grosu GT, Davis JM, Baker JL (1998a) N-Hydroxy-2-(alkyl, aryl or heteroaryl sulfanyl, sulfinyl or sulfonyl)-3-substituted alkyl, aryl or heteroaryl amides as matrix metalloproteinase inhibitors. PCT Int Appl WO 9837877.Google Scholar
  82. Venkatesan MA, Grosu GT, Davis JM, Hu B, O’Dell MJ, Cole DC, Baker JL, Jacobson MP (1998b) N-Hydroxy-2-(alkyl, aryl or heteroaryl sulfanyl, sulfinyl or sul-fonyl)-3-substituted alkyl, aryl or heteroaryl amides as matrix metalloproteinase inhibitors. PCT Int Appl WO 9838163.Google Scholar
  83. Weinblatt ME, Kremer JM, Bankhurst AD, Bulpitt KJ, Fleischmann RM, Fox RI, Jackson CG, Lange M, Bürge DJ (1999) A trial of etanercept, a recombinant tumor necrosis factor receptor: Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. New Engl J Med 340:253–259.PubMedCrossRefGoogle Scholar
  84. Werb Z, Yan Y (1998) A cellular striptease act. Science 282:1279–1280.PubMedCrossRefGoogle Scholar
  85. Weskamp G, Kratzschmar J, Reid MS, Blogel CP (1996) MDC9, a widely expressed cellular distintegrin containing cytoplasmic SH3 ligand domains. J Cell Biol 132:717–726.PubMedCrossRefGoogle Scholar
  86. Wojtowicz-Praga S, Torri J, Johnson M, Steen S, Marshall J, Ness E, Dickson R; Sale M; Wolfsberg TG, White JM (1996) ADAMs in fertilization and development. Dev Biol 180:389–401.CrossRefGoogle Scholar
  87. Williams RO, Feldman M, Main R (1992) Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc Natl Acad Sci USA 89:9784.PubMedCrossRefGoogle Scholar
  88. Xue C-B, He X, Roderick J, Degrado WF, Cherney RJ, Hardman KD, Nelson DJ, Copeland RA, Jaffee BD, Decicco CP (1998) Design and synthesis of cyclic inhibitors of matrix metalloproteinases and TNF-α production. J Med Chem 41:1745–1748.PubMedCrossRefGoogle Scholar
  89. Zhang X-P, Kamata T, Yokoyama K, Puzon-McLaughlin W, Takada Y (1998) Specific interaction of the recombinant disintegrin-like domain of MDC-15 (metargidin, ADAM-15) with integrin αvβ3. J Biol Chem 273:7345–7350.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • J. D. Becherer
    • 1
  • M. H. Lambert
    • 1
  • R. C. Andrews
    • 1
  1. 1.Glaxo Wellcome Inc.Research Triangle ParkUSA

Personalised recommendations