Skip to main content

Clinical Aspects of Nicotinic Agents: Therapeutic Applications in Central Nervous System Disorders

  • Chapter
Neuronal Nicotinic Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 144))

Abstract

Advances in the understanding of the structure, function, and distribution of central nervous system (CNS) nicotinic receptors has provided the impetus for new studies examining the role(s) that these receptors and associated processes may play in CNS functions. Further motivation has come from the realization that such receptors must be involved in the maintenance of cigarette smoking and from clues from studies of degenerative neurologic diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) where the loss of nicotinic receptors has been described (NUPORDBERG 1994). Ongoing investigations of the molecular substructure of CNS nicotinic receptors and their pharmacology have begun to open up new possibilities for novel CNS therapeutics with nicotinic agents (AUPRNERIC et al. 1995). Exploiting these possibilities will require an understanding of the role(s) that these receptor systems play in human cognitive, behavioral, motor, and sensory functioning. Clues from careful studies of human cognition and behavior are beginning to emerge and will provide direction for studies of potentially therapeutic novel nicotinic agents. There is considerable evidence for the involvement of CNS nicotinic cholinergic receptors in a variety of cognitive, motor, and behavioral systems. Modulation of these receptors with the ultimate goal of producing therapeutic benefits is the goal of these investigations and of drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler LE, Hoffer LJ, Grifrith J, et al (1992) Normalization by nicotine of deficient auditory sensory gating in the relatives of schizophrenics. Biol Psychiatry 32:607–616

    Article  PubMed  CAS  Google Scholar 

  • Adler LE, Hoffer LD, Wiser A, Freedman R (1993) Normalization of auditory physiology by cigarette smoking in schizophrenic patients. Am J Psychiatry 150:1856–1861

    PubMed  CAS  Google Scholar 

  • Arendash GW, Sengstock GJ, Sanberg PR, Kern WR (1995) Improved learning and memory in aged rats with chronic administration of the nicotinic receptor agonist GTS-21. Brain Res 674:252–259

    Article  PubMed  CAS  Google Scholar 

  • Arneric SP (1989) Basal forebrain neurons modulate cortical cerebral blood flow:increases by nicotinic cholinergic mechanisms. J Cereb Blood Flow Metab 9 (Suppl 1):S502

    Google Scholar 

  • Arneric SP, Anderson D, Bannon A, et al (1995) Preclinical pharmacology of ABT-418: A prototypical cholinergic channel activator for the potential treatment of Alzheimer’s disease. CNS Drugs Rev.1:1–2

    Google Scholar 

  • Aubert I, Araujo DM, Cécyre D, et al (1992) Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer’s and Parkinson’s diseases. J Neurochem 58:529–541

    Article  PubMed  CAS  Google Scholar 

  • Balfour DJ, Fagerstrom KO (1996) Pharmacology of nicotine and its therapeutic use in smoking cessation and neurodegenerative disorders. Pharmacol Ther 72:51–81

    Article  PubMed  CAS  Google Scholar 

  • Bannon AW, Decker MW, Holladay MW (1998) Broad-spectrum, non-opioid analgesic activity by selective modulation of neuronal nicotinic acetylcholine receptors. Science 2:77–81

    Article  Google Scholar 

  • Baron JA (1986) Cigarette smoking and Parkinson’s disease. Neurology 36:1490–1496

    Article  PubMed  CAS  Google Scholar 

  • Baron JA (1994) Epidemiology of smoking and Parkinson’s disease. In: Effects of nicotine on biological systems II, Clarke, Quik, Thurau, Adlkofer (eds) Birkhäuser, Boston, S42

    Google Scholar 

  • Baumann RJ, Jameson HD, McKean HD, et al (1980): Cigarette smoking and Parkinson’s disease: 1. Comparison of cases with matched neighbors. Neurology 30:839–843

    Article  PubMed  CAS  Google Scholar 

  • Bartus R, Dean R, Beer B, et al (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–417

    Article  PubMed  CAS  Google Scholar 

  • Bickford PC, Wear KD (1995) Restoration of sensory gating of auditory evoked response by nicotine in fimbria-fornix lesioned rats. Brain Res 705:235–240

    Article  PubMed  CAS  Google Scholar 

  • Bickford-Wimer PC, Nagamoto H, Johnson R, et al (1990) Auditory sensory gating in hippocampal neurons: a model system in the rat. Biol Psychiatry 27:183–192

    Article  PubMed  CAS  Google Scholar 

  • Borlongan CV, Shytle RD, Ross SD, et al (1995) Nicotine protects against systemic kainic acid-induced excitotoxic effects. Exp Neurol 136:261–5

    Article  PubMed  CAS  Google Scholar 

  • Brioni JD, Decker MW, Sullivan JP, et al (1997) The pharmacology of (-)-nicotine and novel cholinergic modulators. Adv Pharmacol 37:153–214

    Article  PubMed  CAS  Google Scholar 

  • Brioni JD, O’Neill AB, Kim DJB, et al (1994) Anxiolytic-like effects of the novel cholinergic channel activator ABT 418. J Pharmacol Exp Ther 271:353–361

    PubMed  CAS  Google Scholar 

  • Brown RG, Marsden CD (1990) Cognitive function in Parkinson’s disease: from description to theory. Trends in Neurosciences 13:21–29

    Article  PubMed  CAS  Google Scholar 

  • Buccafusco JJ, Jackson WJ, Terry Jr AV, et al (1995) Improvement in performance of a delayed matching-to-sample task by monkeys following ABT-418: a novel cholinergic channel activator for memory enhancement. Psychopharmacology 120:256–266

    Article  PubMed  CAS  Google Scholar 

  • Caggiula AR, Epstein LH, Perkins KA, Saylor S (1995) Different methods of assessing nicotine-induced antinociception may engage different neural mechanisms. Psychopharmacology 122:301–306

    Article  PubMed  CAS  Google Scholar 

  • Caine E, Weingartner H, Ludlow DL, et al (1981) Qualitative analysis of scopolamineinduced amnesia. Psychopharmacology 74:74–80

    Article  PubMed  CAS  Google Scholar 

  • Callaway E, Halliday R, Naylor H (1992) Cholinergic activity and constraints on information processing. Biological Psychology 33:1–21

    Article  PubMed  CAS  Google Scholar 

  • Carlson NG, et al (1998) Nicotine blocks TNF-alpha-mediated neuroprotection to NMDA by an alpha-bungarotoxin-sensitive pathway. Neurobiol 35:29–36

    Article  CAS  Google Scholar 

  • Corkin, S (1981) Acetylcholine, aging, and Alzheimer’s disease: implications of treatment. Trends in Neuroscience 4:287–290

    Google Scholar 

  • Dalack G, Healy D, Meador-Woodnit TJ (1998) Nicotine dependence in schizophrenia: clinical phenomena and laboratory findings. Am J Psychiatry 155:1490–1501

    PubMed  CAS  Google Scholar 

  • Dalrymple-Alford JC, Kalders AS, Jones RD, et al (1994) A central executive deficit in patients with Parkinson’s disease. J Neurol, Neurosurg, Psych 57:360–367

    Article  CAS  Google Scholar 

  • Damaj MI, Martin BR (1996) Tolerance to the antinociceptive effect of epibatidine after acute and chronic administration in mice. Eur J Pharmacol 300:51–57

    Article  PubMed  CAS  Google Scholar 

  • Donnelly-Roberts DL, Xue IC, Arneric SP, Sullivan JP (1996) In vitro neuroprotective properties of the novel cholinergic channel activator (ChCA), ABT-418, Brain Res 719:36–44

    Article  CAS  Google Scholar 

  • Donnelly-Roberts DL, Puttfarcken PS, Kuntzweiler TA, Briggs CA, et al (1998) ABT-594 [(R)-5-(2-azetidinylmethoxy)-2-chloropyridine]: a novel, orally effective analgesic acting via neuronal nicotinic acetylcholine receptors: I. In vitro characterization. J Pharmacol Exp Ther 285:777–786

    PubMed  CAS  Google Scholar 

  • Downes JJ, Sharp HM, Sagar HJ (1991) The time course of negative priming in Parkinson’s disease. J Clin Exp Neuropsych 13:75

    Google Scholar 

  • Downes JJ, Sharp HM, Costall BM (1993) Alternating fluency in Parkinson’s disease. An evaluation of the attentional control theory of cognitive impairment. Brain 116:887–902

    Article  PubMed  Google Scholar 

  • Drachman D, Leavitt J (1974) Human memory and the cholinergic system. Archives of Neurology 30:113–121

    Article  PubMed  CAS  Google Scholar 

  • Dubois B, Danze F, Pillon B, et al (1987) Cholinergic-dependent cognitive deficits in Parkinson’s disease. Ann Neurol 22:26–30

    Article  PubMed  CAS  Google Scholar 

  • Dubois, B, Pillom R, Lhermitte, et al (1990) Cholinergic deficiency and frontal dysfunction in Parkinson’s disease. Ann Neurol 28:117–121

    Article  PubMed  CAS  Google Scholar 

  • Dursan SM, Revely MA, Bord R, et al (1994) Long lasting improvement of Tourette’s syndrome with transdermal nicotine. Lancet 344:1577

    Article  Google Scholar 

  • Emerich DF, Zanol MD, Norman AB et al (1991) Nicotine potentiates haloperidolinduced catalepsy and hyperactivity. Pharmacol Biochem Behav 38:875–880

    Article  PubMed  CAS  Google Scholar 

  • Fiore MC, Bailey WC, Cohen SJ, et al (1996) Smoking cessation. Clinical Practice Guideline No 18. Rockville, NM: U.S. Department of Health and Human Services, Public Health Service, Agency for Health Care Policy and Research. AHCPR Publication No. 96-0692

    Google Scholar 

  • Flynn D, Mash D (1986) Characterization of 1-[3H]nicotine binding in human cerebral cortex. comparison between Alzheimer’s disease and the normal. J Neurochem 47:1948–1954

    Article  PubMed  CAS  Google Scholar 

  • Foulds J, Stapleton JA, Bell N, et al (1997) Mood and physiological effects of subcutaneous nicotine in smokers and never-smokers. Drug Alcohol Depend 44:105–115

    Article  PubMed  CAS  Google Scholar 

  • Fowler JS, Volkow ND, Wang GJ, et al (1996) Inhibition of monoamine oxidase B in the brains of smokers. Nature 379:733–736

    Article  PubMed  CAS  Google Scholar 

  • Freedman R, Adler LE, Bickford P, et al (1994) Schizophrenia and nicotinic receptors. Harvard Rev Psych 2:179

    Article  CAS  Google Scholar 

  • Freedman R, Wetmore C, Stromberg I, Leonaard S, Olson L (1993) (α-Bungarotoxin binding to hippocampal interneurons: Immunocytochemical characterization and effects on growth-factor expression. J. Ncurosci 13:1965

    CAS  Google Scholar 

  • Freedman R, Coon H, Myles-Worsley M, Orr-Urteger A, et al (1997) Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Nall Acad Sci 94:587–592

    Article  CAS  Google Scholar 

  • Fuld P, Katzman R, Davies P, et al (1982) Intrusions as a sign of Alzheimer dementia: chemical and pathological verification. Ann Neurol 11:155–159

    Article  PubMed  CAS  Google Scholar 

  • Gilbert DG (1979) Paradoxical tranquilizing and emotion-reducing effect of nicotine. Psychol Bull 86:643–661

    Article  PubMed  CAS  Google Scholar 

  • Gitelman DR, Prohovnik 1 (1992) Muscarinic and nicotinic contributions to cognitive function and cortical blood flow. Neurobiol Aging 13:313–318

    Article  PubMed  CAS  Google Scholar 

  • Glassman AH, Heizer JE, Covey LS, et al (1990) Smoking, smoking cessation, and major depression. JAMA 264:1546–1549

    Article  PubMed  CAS  Google Scholar 

  • Goldenberg G, Lang W, Podreka I, et al (1990): Are cognitive deficits in Parkinson’s disease caused by frontal lobe dysfunction?. J Psychophysiology 4:137–144

    Google Scholar 

  • Gray J, Rajan AS, Radcliffe KA, et al (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383:713–716

    Article  PubMed  CAS  Google Scholar 

  • Grobe JE, Perkins KA (2000) Behavioral factors influencing the effects of nicotine. In: Nicotine in Psychiatry: Emerging Trends in Psychopathology and Novel Therapeutics. Piasecki M and Newhouse P (eds) American Psychiatric Press, Washington (in press)

    Google Scholar 

  • Heishman SJ, Taylor RC, Henningfield JE (1994) Nicotine and smoking: a review of effects on human performance. Exp Clin Psychopharmacol 2:345–395

    Article  CAS  Google Scholar 

  • Hellerstein MK, Benowitz NL, Neese RA, et al (1994) Effects of cigarette smoking and its cessation on lipid metabolism and energy expenditure in heavy smokers. J Clin Invest 93:265–272

    Article  PubMed  CAS  Google Scholar 

  • Hughes JR (1998) Dependence on the abuse of nicotine replacement medications. an update. In: Benowitz N (ed) Nicotine Safety and Toxicity. Oxford, New York, pp 147–160

    Google Scholar 

  • Itoh A, Nitta A, Nadai M, et al (1996) Dysfunction of cholinergic and dopaminergic neuronal systems in P-amyloid protein-infused rats. J Neurochem 66:1113–1117

    Article  PubMed  CAS  Google Scholar 

  • James JR, Nordberg A (1995) Genetic and environmental aspects of the role of nicotinic receptors in neurodegenerative disorders: emphasis on Alzheimer’s disease and Parkinson’s disease. Behavior Genetics 25:149–159

    Article  PubMed  CAS  Google Scholar 

  • Jamner LD, Girdler SS, Shapiro D, Jarvik ME (1998) Pain inhibition, nicotine, and gender. Exp Clin Psychopharmacol 6:96–106

    Article  PubMed  CAS  Google Scholar 

  • Jones GMM, Sahakian BJ, Levy R, et al (1992) Effects of acute subcutaneous nicotine on attention, information processing and short term memory in Alzheimer’s disease. Psychopharmacology 108:485–494

    Article  PubMed  CAS  Google Scholar 

  • Kaneko S, Maeda T, Kume T, et al (1997) Nicotine protects cultured cortical neurons against glutamate-induced cytotoxicity via alpha 7 neuronal receptors and neuronal CNS receptors. Brain Res 765:135–140

    Article  PubMed  CAS  Google Scholar 

  • Katayama S, Hirata K, Tanaka H, et al (1995) Efficacy of transdermal nicotine in dementia: a study using event related potentials and a middle latency response. Brain Imaging of Nicotine and Tobacco Smoking, NPP Books, Ann Arbor, 289–302

    Google Scholar 

  • Kelton MC, Kahn HJ, Conrath CL, Newhouse PA (in press) The chronic and acute effects of nicotine in Parkinson’s disease. Brain Cogn

    Google Scholar 

  • Khan IM, Yaksh TL, Taylor P (1997) Epibatidine binding sites and activity in the spinal cord. Brain Res 753:269–282

    Article  PubMed  CAS  Google Scholar 

  • Kihara T, Shimohama S, Urushitani, M et al (1998) Stimulation of alpha4beta2 nicotinic acetylcholine receptors inhibits beta-amyloid toxicity. Brain Res; 792:331–334

    Article  PubMed  CAS  Google Scholar 

  • Kihara T, Shimohama S, Sawada H, et al (1997) Nicotinic receptor stimulation protects neurons against beta-amyloid toxicity. Ann Neuro 42:159–63

    Article  CAS  Google Scholar 

  • Kirch DG (2000) Nicotine and major mental disorders. In: Nicotine in Psychiatry: Emerging Trends in Psychopathology and Novel Therapeutics. Piasccki M and Newhouse P (eds) American Psychiatric Press, Washington (in press)

    Google Scholar 

  • Ksir, C Benson, D (1983) Enhanced behavioral response to nicotine in an animal model of Alzheimer’s disease. Psychopharmacol 81:272–273

    Google Scholar 

  • Kuryatov A, Gerzanich V, Nelson M, et al (1997) Mutation causing autosomal dominant nocturnal frontal lobe epilepsy alters calcium permeability, conductance, and gating of human α4β2 nicotinic acetylcholine receptors. J. Neurosci 17:9035–9047

    CAS  Google Scholar 

  • Lawrence AD, Sahakian BJ (1995) Alzheimer’s disease, attention, and the cholinergic system. Alzheimer Dis Assoc Disord 9(Suppl 2):43–49

    PubMed  Google Scholar 

  • Le Houezec J, Halliday R, Benowitz NL, et al (1994) A low dose of nicotine improves information processing in non-smokers. Psychopharnacology 114:628–634

    Article  Google Scholar 

  • Lee PN (1994) Smoking and Alzheimer’s disease: a review of the epidemiologic evidence. Neuroepidemiology 13:131–144

    Article  PubMed  Google Scholar 

  • Levin E (1992) Nicotinic systems and cognitive function. Psychophannacol 108:417–431

    Article  CAS  Google Scholar 

  • Levin ED, Conners CK, Sparrow E et al (1996) Nicotine effects on adults with Attention Deficit/Hyperactivity Disorder. Psychopharmacology.123:55–6

    Google Scholar 

  • Levin ED, Wilson W, Rose JE, McEvoy J (1996) Nicotine-haloperidol interactions and cognitive performance in schizophrenics. Neuropsychopharmacology 15:429–436

    Article  PubMed  CAS  Google Scholar 

  • Linville DG, Arneric SP (1991) Cortical cerebral blood flow governed by the basal forebrain: age related impairments. Neurobiol Aging 12:503–510

    Article  PubMed  CAS  Google Scholar 

  • Lipicllo PM, Bencherif M, Gray JA, et al (1996) RJR-2403: a nicotinic agonist with CNS selectivity II: In vivo characterization. J Pharmacol Exp Ther 279:1422–1429

    Google Scholar 

  • Lloyd GK, Menzaghi F, Bontempi B, et al (1998) The potential of subtype-selective neuronal nicotinic acetylcholine receptor agonists as therapeutic agents. Life Sci 62:1601–1606

    Article  PubMed  CAS  Google Scholar 

  • Luntz-Leybman V, Bickford P, Freedman R (1992) Cholinergic gating of response to auditory stimuli in rat hippocampus. Brain Res 587:130–136

    Article  PubMed  CAS  Google Scholar 

  • McConville BJ, Sanberg PR, Fogelson HM, et al (1992) The effects of nicotine plus haloperidol compared to nicotine only and placebo nicotine only in reducing tic severity and frequency in Tourette’s disorder. Biol Psychiatry 31:832–840

    Article  PubMed  CAS  Google Scholar 

  • McEvoy JP, Freudenreich ••, Levin ED, Rose JE (1995a) Haloperidol increases smoking in patients with schizophrenia. Psychopharmacology 119:124–126

    Article  PubMed  CAS  Google Scholar 

  • McEvoy JP, Freudenreich ••, McGee M, et al (1995b) Clozapine decreases smoking in patients with chronic schizophrenia. Biol Psychiatry 37:550–552

    Article  PubMed  CAS  Google Scholar 

  • Marin P, Maus M, Deagher S, et al (1994) Nicotine protects cultured striatal neurons against N-methyl-d-aspartate receptor-mediated neurotoxicity. NeuroReport 5:1977–1980

    Article  PubMed  CAS  Google Scholar 

  • Marshall J, Schniden H (1966) Effect of adrenaline, noradrenaline, atropine, and nicotine on some types of human tremor. J Neurol Neurosurg Psychiatry 29:214–218

    Article  PubMed  CAS  Google Scholar 

  • Maurice T, Lockhart BP, Privat A (1996) Amnesia induced in mice by centrally administered P-arnyloid peptides involves cholinergic dysfunction. Brain Res 706:181–193

    Article  PubMed  CAS  Google Scholar 

  • Menzaghi F, Whelan KT, Risbrough VB et al (1997) Interactions between a novel cholinergic ion channel agonist, SIB-1765F and L-DOPA in the reserpine model of Parkinson’s disease in rats. Journal of Pharmacology&Experimental Therapeutics 280:393–401

    CAS  Google Scholar 

  • Moll H (1926) The treatment of postencephalitic Parkinsonism by nicotine. Brit Med Journal 1:1079–1081

    Article  CAS  Google Scholar 

  • Monteggia LM, Arneric SP, Giordano T (1994) Nicotine effects on the regulation of amyloid precursor protein splicing, neurotrophin and glucose transporter RNA levels in aged rats. Int J Dev Neurosci 12:133–141

    Article  PubMed  CAS  Google Scholar 

  • Morens DM, Grandinetti A, Reed D, et al (1995) Cigarette smoking and protection from Parkinson’s disease: false association or etiologic clue?. Neurology 45:1041–1051

    Article  PubMed  CAS  Google Scholar 

  • Muir JL, Dunnett SB, Robbins TW, et al (1992) Attentional functions of the forebrain cholinergic systems: effects of intraventricular hemicholimum, physostigmine, basal forebrain lesions and intracortical grafts on a multiple-choice serial reaction time task. Exp Brain Res 89:611–622

    Article  PubMed  CAS  Google Scholar 

  • Myrsten A, Post B, Frankenhaeuser M, et al (1972) Changes in behavioral and physiological activation induced by cigarette smoking in habitual smokers. Psychopharmacol (Berl) 76:232–235

    Google Scholar 

  • Nagamoto HT, Adler LE, Hea RA et al (1996) Gating of auditory P50 in schizophrenics: unique effects of clozapine. Biol Psychiatry 40:181–188

    Article  PubMed  CAS  Google Scholar 

  • Newhouse PA, Penetar D, Fertig J, et al (1992a) Stimulant drug effects after prolonged total sleep deprivation: a comparison of amphetamine, nicotine, and deprenyl. Mil Psychol 4:207–234

    Article  Google Scholar 

  • Newhouse PA, Potter A, Corwin J, et al (1997) The potential for nicotinic modulation of cognitive and motor functioning in Parkinson’s disease. Presented at the 4th Conference on Neurodegenerative Disorders: Common Molecular Mechanisms, Ocho Rios Jamaica, Feb 23-28

    Google Scholar 

  • Newhouse PA, Potter A, Corwin J, et al (1992b) Acute nicotinic blockade produces cognitive impairment in normal humans. Psychopharmacology 108:480–484

    Article  PubMed  CAS  Google Scholar 

  • Newhouse PA, Potter A, Lenox RH, et al (1993) Effects of nicotinic agents on human cognition: possible therapeutic applications in Alzheimer’s and Parkinson’s diseases. Med Chem Res 2:629–642

    Google Scholar 

  • Newhouse PA, Potter A, Corwin J, et al (1994) Age-related effects of the nicotinic antagonist mecamylamine on cognition and behavior. Neuropsychopharm 10:93–107

    CAS  Google Scholar 

  • Newhouse PA, Potter A, Corwin J, et al (1996) Effects of nicotinic cholinergic agents on cognitive functioning in Alzheimer’s and Parkinson’s disease. Drug Dev Res 38:278–289

    Article  CAS  Google Scholar 

  • Newhouse PA, Sunderland T, Tariot PN, et al (1988) Intravenous nicotine in Alzheimer’s disease: a pilot study. Psychopharmacology 95:171–175

    Article  PubMed  CAS  Google Scholar 

  • Newhouse PA, Sunderland T, Narang PK, et al (1990) Neuroendocrine, physiologic, and behavioral responses following intravenous nicotine in nonsmoking healthy volunteers and in patients with Alzheimer’s disease. Psychoneuroendocrin.15:471–48

    Google Scholar 

  • Nordberg A (1993) Effect of long-term treatment with tacrine (THA) in Alzheimer’s disease as visualized with PET. Acta Neurol Scand Suppl 149:62–65

    PubMed  CAS  Google Scholar 

  • Nordberg A (1994) Human nicotinic receptors — their role in aging and dementia. Neurochern Int.25:93–9

    Google Scholar 

  • Nordberg A, Lundqvist H, Hartvig P, et al (1995) Kinetic analysis of regional (S) (-) 11C-nicotine binding in normal and Alzheimer brains — in vivo assessment using positron emission tomography. Alzheimer Dis Assoc Disord 9:21–27

    Google Scholar 

  • Olincy A, Ross RG, Young DA et al (1998) Improvement in smooth pursuit eye movements after cigarette smoking in schizophrenic patients. Neuropsychopharmacology 18:175–185

    Article  PubMed  CAS  Google Scholar 

  • Owman C, Fuxe K, Jason A, Kahrstrom J (1989) Studies of the protective actions of nicotine on neuronal and vascular functions in rats: Comparison between sympathetic noradrenergic and mesostriatal dopaminergic fiber system and the effect of a dopamine agonist. Prog Brain Res 79:267–276

    Article  PubMed  CAS  Google Scholar 

  • Parks RW, Young CS, Rippey RF, et al (1994) Nicotinic stimulation of anterior regional glucose metabolism in Alzheimer’s disease: Preliminary study with transdermal patches in Giacobini and Becker (eds) Alzheimer’s Disease: Therapeutic Strategies, Birkhäuser, Boston 424–427

    Google Scholar 

  • Parrott AC, Craig D (1992) Cigarette smoking and nicotine gum (0,2 and 4mg): effects upon four visual attention tasks. Neuropsychobiol 25:34–43

    Article  CAS  Google Scholar 

  • Perkins KA, Grobc JE, Mitchell SL et al (1995) Acute tolerance to nicotine in smokers: lack of dissipation within 2 hours. Psychopharmacology 118:164–170

    Article  PubMed  CAS  Google Scholar 

  • Perkins KA (1992) Metabolic effects of cigarette smoking. J Appl Physiol 72:401–409

    PubMed  CAS  Google Scholar 

  • Perkins KA, Grobe JE, Epstein LH, et al (1992a) Effects of nicotine on subjective arousal may be dependent on baseline subjective state. J Subst Abuse 4:131–141

    Article  PubMed  CAS  Google Scholar 

  • Perkins KA, Grobe JE, Fonte C, Breus M (1992b) “Paradoxical” effects of smoking on subjective stress versus cardiovascular arousal in males and females. Phannacol Biochem Behav 41:301–311

    Article  Google Scholar 

  • Perry EK, Curtis M, Dick DJ, et al (1985) Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. J Neurol Neurosurg Psychiat 48:413–421

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Court JA, Lloyd S, et al (1996) P-amyloidosis in normal aging and transmitter signaling in the human temporal lobe. Ann NY Acad Sci 777:388–392

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Morris CM, Court JA, et al (1995) Alteration in nicotinic binding sites in Parkinson’s disease, Lewy body dementia, and Alzheimer’s disease: possible index of early neuropathology. Neuroscience 64:385–395

    Article  PubMed  CAS  Google Scholar 

  • Peterson R (1977) Scopolamine-induced learning failures in man. Psychopharmacol, 52:283–289

    Article  Google Scholar 

  • Philips HA, Shaffer IE, Crossland KM, et al (1998) Autosomal dominant nocturnal frontal-lobe epilepsy: genetic heterogeneity and evidence for a second locus at 15q24. Am J Hum Genet 63:1108–1116

    Article  Google Scholar 

  • Pickworth WB (1997) Effects of mecamylamine on spontaneous EEG and performance in smokers and nonsmokers. Pharmacology, Biochemistry&behavior 56:181–187

    Article  CAS  Google Scholar 

  • Porchet HC, Benowitz NL, Sheiner LB (1988) Pharmacodynamic model of tolerance: application to nicotine. J Pharmacol Exp Ther 244:231–236

    PubMed  CAS  Google Scholar 

  • Potter A, Corwin J, Lang J, Piasecki M, Lenox R, Newhouse PA (1999) Acute effects of the selective cholinergic channel activator (nicotinic agonist) ABT-418 in Alzheimer’s disease. Psychopharmacol 142:334–342

    Article  CAS  Google Scholar 

  • Pendergast M, Jackson W, Terry Jr A, et al (1998) Central nicotinic receptor agonists ABT-418, ABT-089, and (-)-nicotine reduce distractibility in adult monkeys. Psychopharmacol (Berl) 136:50–58

    Article  Google Scholar 

  • Prohovnik I, Mayeux R, Sackheirn HA, et al (1988) Cerebral profusion as a diagnostic marker of early Alzheimer’s disease. Neurology 38:931–937

    Article  PubMed  CAS  Google Scholar 

  • Provost SC, Woodward R (1991) Effects of nicotine gum on repeated administration of the Stroop test. Psychopharmacol 104:536–540

    Article  CAS  Google Scholar 

  • Puttfarcken PS, Manelli AM, Arneric SP, Donnelly-Roberts DL (1997) Evidence for nicotinic receptors potentially modulating nociceptive transmission at the level of the primary sensory neuron: studies with F11 cells. J Neurochern 69:930–938

    Article  CAS  Google Scholar 

  • Reading PJ (1991) Frontal lobe dysfunction in schizophrenia and Parkinson’s disease — a meeting point for neurology, psychology and psychiatry: discussion paper. J Royal Soc Med 84:349–353

    CAS  Google Scholar 

  • Reid WGJ, Broc GA, Morris JGL, et al (1990) The role of cholinergic deficiency in neuropsychological deficits in idiopathic Parkinson’s disease. Dementia 3:114–120

    Google Scholar 

  • Riekkinen P, Riekkinen M (1995) Effects of tetrahydro aminoacridine and nicotine in nucleus basalis and serotonin-lesioned rats. Eur J Pharmacol 279:65–73

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, Everitt BJ, Marston HM, et al (1989) Comparative effects of ibotenic acid-and quisqualic acid-induced lesions of the substantia innominata on attentional function in the rat: further implications for the role of the cholinergic neurons of the nucleus basalis in cognitive processes. Behav Brain Res 35:221–224

    Article  PubMed  CAS  Google Scholar 

  • Roberts RG, Stevenson JE, Westerman RA, Permcfather J (1995) Nicotinic acetylcholine receptors on capsaicin-sensitive nerves. Neuroreport 6:1578–1582

    Article  PubMed  CAS  Google Scholar 

  • Rose JE, Behm FM, Westman EC, et al (1994) Mecamylamine combined with nicotine skin patch facilitates smoking cessation beyond nicotine patch treatment alone. Clin Pharmacol Ther 56:86–99

    Article  PubMed  CAS  Google Scholar 

  • Rose JE, Westman EC, Behm FM (1996) Nicotine/mecamylamine combination treatment for smoking cessation. Drug Devel Res 38:243–256

    Article  CAS  Google Scholar 

  • Ruberg M, Ploska F, Javoy-Agid F, et al (1982) Muscarinic binding and choline acetyltransferase activity in parkinsonian subjects with reference to dementia. Brain Res 232:129–139

    Article  PubMed  CAS  Google Scholar 

  • Rusted J, Graupner L, O’Connell N, et al (1994) Does nicotine improve cognitive function?. Psychopharmacology 115:547–549

    Article  PubMed  CAS  Google Scholar 

  • Sacaan Al, Reid RT, Santori EM, et al (1997) Pharmacological characterization of SIB1765F: a novel cholinergic ion channel agonist. Journal of Pharmacology&Experimental Therapeutics 280:373–383

    CAS  Google Scholar 

  • Sahakian BJ, Coull JT (1994) Nicotme and THA: Evidence for improved attention in patients with dementia of the Alzheimer type. Drug Dev Res 31:80–88

    Article  Google Scholar 

  • Salomon AR, Marcinowski KJ, Zagorski M (1996) Nicotine inhibits amyloid formation by the β-peptide. Biochemistry 35:13568–13578

    Article  PubMed  CAS  Google Scholar 

  • Sanberg PR, McConville BJ, Fogelson HM, et al (1989) Nicotine potentiates the effects of haloperidol in animals and patients with Tourette syndrome. Biomed Pharmacother 43:19–23

    Article  PubMed  CAS  Google Scholar 

  • Sanberg PR, Shytle RD, Silver AA (1998) Treatment of Tourette’s syndrome with mecamylamine. Lancet 352(9129):705–706

    Article  PubMed  CAS  Google Scholar 

  • Schneider JS, Van Velson M, Menzaghi F, Lloyd GK (1998) Effects of the nicotinic acetylcholine receptor agonist SIB-1508Y on object retrieval performance in MPTP-treated monkeys: comparison with levodopa treatment. Annals of Neurology 43:311–317

    Article  PubMed  CAS  Google Scholar 

  • Schwartz RD, Lehmann J, Kellar KJ (1984) Presynaptic nicotinic cholinergic receptors labeled by [3H]acetylcholine on catecholamine and serotonin receptors in brain. J Neurochem 42:1495–1498

    Article  PubMed  CAS  Google Scholar 

  • Seale TW, Nael R, Singh S, Basmadjian G (1998) Inherited, selective hypoanalgesic response to cytisine in the tail-flick test in CF-1 mice. Neuroreport 9:201–205

    Article  PubMed  CAS  Google Scholar 

  • Seguela P, Wadiche J, Dineleiller K, Dam JA, Patrick J (1993) Molecular cloning, functional properties, and distribution of rat brain α7: a nicotinic cation channel highly permeable to calcium. J Neuroscience 13:596–604

    CAS  Google Scholar 

  • Selkoe DJ (1996) Amyloid β-protein and the genetics of Alzheimer’s disease. J Biol Chem 271:18295–18298

    PubMed  CAS  Google Scholar 

  • Sershen H, Hashim, A, Lajtha A (1987) Behavioral and biochemical effects of nicotine in an MPTP-induced mouse model of Parkinson’s disease. Pharmacol Biochem Behav 28:299–303

    Article  PubMed  CAS  Google Scholar 

  • Seyler LE Jr, Pomerleau OF, Fertig JB, et al (1986) Pituitary hormone response to cigarette smoking. Pharmacol Biochem Behav 24:159–162

    Article  PubMed  CAS  Google Scholar 

  • Shapiro ES, Shapiro AK, Fulop G, et al (1989) Controlled study of haloperidol, pimozide, and placebo for the treatment of Gilles de la Tourette’s syndrome. Arch Gen Psychiatry 46:722–730

    Article  PubMed  CAS  Google Scholar 

  • Shimohama S, Akaike A, Kimura J (1996) Nicotine-induced protection against glutamate cytotoxicity: Nicotinic cholinergic receptor-mediated inhibition of nitric oxide formation. Ann NY Acad Sci 777:356–361

    Article  PubMed  CAS  Google Scholar 

  • Shytle RD, Baker M, Silver AA, et al Smoking, nicotine and movement disorders. In: Nicotine in Psychiatry: Emerging Trends in Psychopathology and Novel Therapeutics. Piasecki M and Newhouse P (eds) American Psychiatric Press, Washington, (in press)

    Google Scholar 

  • Sitaram N, Weingartner H, Gillin J (1978) Human serial learning: enhancement with arecholine and choline and impairment with scopolamine. Science 201:274–276

    Article  PubMed  CAS  Google Scholar 

  • Snaedal J, Johannesson T, Jonsson JE, et al (1996) The effects of nicotine in dermal plaster on cognitive functions in patients with Alzheimer’s disease. Dementia 7:47–52

    PubMed  CAS  Google Scholar 

  • Snyder FR, Henningfield JE (1989) Effects of nicotine administration following 12 hours of tobacco deprivation: assessment on computerized performance tasks. Psychopharmacology 97:17–22

    Article  PubMed  CAS  Google Scholar 

  • Spillich GJ, June L, Renner J (1992) Cigarette smoking and cognitive performance. Br J Addiction 87:1313–1326

    Article  Google Scholar 

  • Stam CJ, Visser SL, Op de Coul AAW, et al (1993) Disturbed frontal regulation of attention in Parkinson’s disease. Brain 116:1139–1158

    Article  PubMed  Google Scholar 

  • Suh HW, Song DK, Choi SR, et al (1996) Nicotine enhances morphine — and betaendorphin-induced antinociception at the supraspinal level in the mouse. Neuropeptides 30:479–484

    Article  PubMed  CAS  Google Scholar 

  • Taylor AE, Saint-Cyr JA, Lang AE (1986) Frontal lobe dysfunction in Parkinson’s disease: the cortical focus of neostriatal outflow. Brain 109:845–883

    Article  PubMed  Google Scholar 

  • Tyas SL (1996) Are tobacco and alcohol use related to Alzheimer’s disease?. A critical assessment of the evidence and its implications. Addict Biol 1:237–254

    Article  PubMed  CAS  Google Scholar 

  • Ulrich J, Johanson-Locher G, Sciler WO, et al (1997) Does smoking protect from Alzheimer’s disease?. Alzheimer-type changes in 301 unselected brains from patients with known smoking history. Acta Neuropath 94:450–454

    Article  PubMed  CAS  Google Scholar 

  • Una C, Changeux JP (1998) Allosteric nicotinic receptors, human pathologies. J Physiology (Paris) 92:63–74

    Article  Google Scholar 

  • Van Duijn CM, Havekes LM, Van Broeckhoven C, et al (1995) Apolipoprotein E genotype and association between smoking and early onset Alzheimer’s disease. BMJ 310:627–631

    Article  PubMed  Google Scholar 

  • Vidal C (1994a) Nicotinic potentiation of glutamatergic synapses in the prefrontal cortex: new insight into the analysis of the role of nicotinic receptors in cognitive functions. Drug Dev Res 31:120–126

    Article  CAS  Google Scholar 

  • Vidal C (1994b) The functional role of nicotinic receptors in the rat prefrontal cortex: electrophysiological, biochemical, and behavioral characterizations in Effects of Nicotine on Biological Systems II, Clarke, Quik, Thurau, Adlkofer (eds) Birkhäuser, Boston, P70

    Google Scholar 

  • Waldo MC, Carey G, Myles-Worsley M, et al (1991) Codistribution of a sensory gating deficit and schizophrenia in multi-affected families. Psychiatry Res 39:257–268

    Article  PubMed  CAS  Google Scholar 

  • Warburton DM, Rusted JM (1993) Cholinergic control of cognitive resources. Neuropsychobiology 28:43–46

    Article  PubMed  CAS  Google Scholar 

  • Warpman U, Nordberg A, (1995) Epibatidinc and ABT 418 reveal selective losses of alpha 4 beta 2 nicotinic receptors in Alzheimer brains. Neuroreport 6:2419–2423

    Article  PubMed  CAS  Google Scholar 

  • Wesnes K, Revell A (1984) The separate and combined effects of scopolamine and nicotine on human information processing. Psychopharmacology 84:5–11

    Article  PubMed  CAS  Google Scholar 

  • Wesnes K, Warburton D (1983) Smoking, nicotine, and human performance. Pharmacol Ther 21:189–208

    Article  PubMed  CAS  Google Scholar 

  • Wesnes K, Warburton D (1985) Effects of scopolamine and nicotine on human performance, Psychopharmacol 82:147–150

    Google Scholar 

  • Westman EC, Rose JE (2000) Nicotine replacement therapies and beyond. In: Nicotine in Psychiatry: Emerging Trends in Psychopathologyand Novel Therapeutics. Piasecki M and Newhouse P (eds) American Psychiatric Press, Washington, (in press)

    Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG, et al (1982) Alzheimer’s disease and senile dementia-loss of neurons in the basal forebrain. Science 215:1237–1239

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Hedreen JC, White CL, et al (1983) Basal forebrain neurons in dementia of Parkinson’s disease. Ann Neurol 13:243–248

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse: P, Martino A, Antuono P, et al (1986) Nicotinic acetylcholine binding sites in Alzheimer’s disease. Brain Res 371:146–151

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Martino AM, Wagster MV, et al (1988) Reductions in [3H]nicotinic acetylcholine binding in Alzheimer’s disease and Parkinson’s Disease: an autoradiographic study. Neurology 38:720–723

    Article  PubMed  CAS  Google Scholar 

  • Wilens TE, Biederman J, Spencer TJ, et al (1999) A pilot controlled clinical trial of ABT-418, a cholinergic agonist, in the treatment of adults with attention deficit hyperactivity disorder. Am J Psychiatry 156:1931–1937

    PubMed  CAS  Google Scholar 

  • Wilson AL, Langley LK, Monley J, et al (1995) Nicotine patches in Alzheimer’s disease: pilot study on learning, memory, and safety. Pharmacol Biochem Behav 51:509–514

    Article  PubMed  CAS  Google Scholar 

  • Winniford NO, Wheelan KR, Kremers MS, et al (1986) Smoking-induced coronary vasoconstriction in patients with atherosclerotic coronary artery disease: evidence for adrenergically mediated alterations in coronary artery tone. Circulation 73:662–667

    Article  PubMed  CAS  Google Scholar 

  • Wolf SS, Jones DW, Knable MB, et al (1996) Tourette syndrome: prediction of phenotypic variation in monozygotic twins by caudate nucleus D2 receptor binding. Science 273:1225–1227

    Article  PubMed  CAS  Google Scholar 

  • Yamashita H, Nakamura S (1996) Nicotine rescues PC 12 cells from death induced by nerve growth factor deprivation. Neurosci Lett 213:145–147

    Article  PubMed  CAS  Google Scholar 

  • Zamani MR, Allen YS, Owen GP, Gray JA (1997) Nicotinic modulates the neurotoxic effect of beta-amyloid protein (25-35) in hippocampal cultures. Neuroreport 8:513–517

    Article  PubMed  CAS  Google Scholar 

  • Zarrindast MR, Pazouki M, Nassiri-Rad S (1997) Involvement of cholinergic and opioid receptor mechanisms in nicotine-induced antinociception. Pharmacol Toxicol 81:209–213

    Article  PubMed  CAS  Google Scholar 

  • Zevin, S, Benowitz NL (2000) Pharmacokinetics and pharmacodynamics of nicotine. In: Nicotine in Psychiatry: Emerging Trends in Psychopathology and Novel Therapeutics. Piasecki M and Newhouse P (eds) American Psychiatric Press, Washington(in press)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Newhouse, P.A., Kelton, M. (2000). Clinical Aspects of Nicotinic Agents: Therapeutic Applications in Central Nervous System Disorders. In: Clementi, F., Fornasari, D., Gotti, C. (eds) Neuronal Nicotinic Receptors. Handbook of Experimental Pharmacology, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57079-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57079-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63027-9

  • Online ISBN: 978-3-642-57079-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics