Skip to main content

The Role of Nitric Oxide in the Peripheral Nervous System

  • Chapter
Nitric Oxide

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 143))

Abstract

The term “nitrergic”, initially coined by (1992) to describe nerves whose transmission process utilises the L-arginine-nitric oxide (NO) pathway, has now gained acceptance by the International Union of Pharmacology Committee on Nomenclature of the Pharmacology of Nitric Oxide (MONCADA et al. 1997). As was the case when (1933) proposed the terms adrenergic and cholinergic, nitrergic was introduced to facilitate classification and discussion and not to indicate the precise chemical nature of the neurotransmitter involved. Indeed, as will be discussed, intense debate has raged as to whether the nitrergic transmitter is NO per se or a NO-like molecule. Most of the major objections to acceptance of NO, however, now seem to have been largely overcome. The term nitrergic is, however, far from ideal. Although seemingly appropriate in circumstances where a particular transmission process is wholly explained by the L-arginine-NO pathway, it appears less so in situations of co-transmission both in the periphery and central nervous system (CNS), where this pathway is not the sole or even the dominant mechanism for transmission. Nevertheless, in the absence of a more suitable alternative, the term nitrergic is employed here to include any nerve that utilises the L-arginine-NO pathway, irrespective of the co-involvement of additional neurotransmitters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addicks K, Bloch W, Feelisch M (1994) Nitric oxide modulates sympathetic neurotransmission at the prejunctional level. Microscopy Res Technique 29:161–168

    CAS  Google Scholar 

  • Akaike T, Yoshida M, Miyamoto Y, et al. (1993) Antagonistic action of imidazolineoxyl N-oxides against endothelium-derived relaxing factor/NO through a radical reaction. Biochemistry 32:827–832

    PubMed  CAS  Google Scholar 

  • Ambache N, Killick SW, Zar MA (1975) Extraction from ox retractor penis of an inhibitory substance which mimics its atropine-resistant neurogenic relaxation. Br J Pharmacol 54:409–410

    PubMed  CAS  Google Scholar 

  • Anderson CR (1992) NADPH diaphorase-positive neurons in the rat spinal cord include a subpopulation of autonomic preganglionic neurons. Neurosci Lett 139: 280–284

    PubMed  CAS  Google Scholar 

  • Andersson K-E (1993) Pharmacology of lower urinary tract smooth muscles and penile erectile tissues. Pharmacol Rev 45:253–308

    Google Scholar 

  • Andersson K-E, Persson K (1993) The L-arginine/nitric oxide pathway and nonadrenergic, non-cholinergic relaxation of the lower urinary tract. Gen Pharmacol 24:833–839

    PubMed  CAS  Google Scholar 

  • Andersson K-E, Wagner G (1995) Physiology of penile erection. Physiol Rev 75: 191–236

    PubMed  CAS  Google Scholar 

  • Askew SC, Barnett DJ, McAninly J, Williams DHL (1995) Catalysis by Cu2+ of nitric oxide release from S-nitrosothiols (RSNO). J Chem Soc Perkin Trans 2:741–745

    Google Scholar 

  • Assreuy J, Cunha FQ, Liew FY, Moncada S (1993) Feedback inhibition of nitric oxide synthase by nitric oxide. Br J Pharmacol 108:833–837

    PubMed  CAS  Google Scholar 

  • Augustine GJ (1990) Regulation of transmitter release at the giant squid synapse by presynaptic delayed rectifier potassium current. J Physiol 431:343–364

    PubMed  CAS  Google Scholar 

  • Augustine GJ, Charlton MP, Smith SJ (1987) Calcium action in synaptic transmitter release. Ann Rev Neurosci 10:633–693

    PubMed  CAS  Google Scholar 

  • Ballard SA, Gingell CJ, Tang K, Turner LA, Price ME, Naylor AM (1998) Effects of sildenafll on the relaxation of human corpus cavernosum tissue in vitro and on activities of cyclic nucleotide phosphodiesterase isoenzymes. J Urol 159:2164–2171

    PubMed  CAS  Google Scholar 

  • Barbier AJM, Lefebvre RA (1992) Effect of LY 83583 on relaxation induced by nonadrenergic, non-cholinergic nerve stimulation and exogenous nitric oxide in the rat gastric fundus. Eur J Pharmacol 219:331–334

    PubMed  CAS  Google Scholar 

  • Barbier AJM, Lefebvre RA (1993) Involvement of the L-arginine: nitric oxide pathway in nonadrenergic noncholinergic relaxation of the cat gastric fundus. J Pharmacol Exp Ther 266:172–178

    PubMed  CAS  Google Scholar 

  • Barnes PJ, Belvisi MG (1993) Nitric oxide and lung disease. Thorax 48:1034–1043

    PubMed  CAS  Google Scholar 

  • Barnette MS, Grous M, Manning CD, Callahan JF, Barone FC (1990) Inhibition of neuronally induced relaxation of canine esophageal sphincter by opioid peptides. Eur J Pharmacol 182:363–368

    PubMed  CAS  Google Scholar 

  • Bayguinov O, Sanders KM (1993a) Regulation of neural responses in the canine pyloric sphincter by opioids. Br J Pharmacol 108:1024–1030

    PubMed  CAS  Google Scholar 

  • Bayguinov O, Sanders KM (1993b) Role of nitric oxide as an inhibitory neurotransmitter in the canine pyloric sphincter. Am J Physiol 246:G975–G983

    Google Scholar 

  • Bayguinov O, Sanders KM (1998) Dissociation between electrical and mechanical responses to nitrergic stimulation in the canine gastric fundus. J Physiol 509: 437–448

    PubMed  CAS  Google Scholar 

  • Beavo JA, Conti M, Heaslip RJ (1994) Multiple cyclic nucleotide phosphodiesterases. Mol Pharmacol 46:399–405

    PubMed  CAS  Google Scholar 

  • Belvisi MG, Miura M, Stretton D, Barnes PJ (1993) Endogenous vasoactive intestinal peptide and nitric oxide modulate cholinergic neurotransmission in guinea-pig trachea. Eur J Pharmacol 231:97–102

    PubMed  CAS  Google Scholar 

  • Belvisi MG, Ward JK, Mitchell JA, Barnes PJ (1995) Nitric oxide as a neurotransmitter in human airways. Arch Int Pharmacodyn Therap 329:97–110

    CAS  Google Scholar 

  • Boeckxstaens GE, Pelckmans PA, Rampart M, et al. (1990) GABAA receptor-mediated stimulation of non-adrenergic non-cholinergic neurones in the dog ileocolonic junction. Br J Pharmacol 101:460–464

    PubMed  CAS  Google Scholar 

  • Boeckxstaens GE, De Man JG, Pelckmans PA, Cromheeke KM, Herman AG, Van Maercke YM (1993a) Ca2+ dependency of the release of nitric oxide from nonadrenergic non-cholinergic nerves. Br J Pharmacol 110:1329–1334

    PubMed  CAS  Google Scholar 

  • Boeckxstaens GE, De Man JG, Pelckmans PA, Herman AG, Van Maercke YM (1993b) α2-Adrenoceptor-mediated modulation of the nitrergic innervation of the canine isolated ileocolonic junction. Br J Pharmacol 109:1079–1084

    PubMed  CAS  Google Scholar 

  • Bolotina VM, Najibi S, Palacino PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368: 850–853

    PubMed  CAS  Google Scholar 

  • Boolell M, Gepiattee S, Gingell JC, Allen MJ (1996) Sildenafll, a novel effective oral therapy for male erectile dysfunction. Br J Urol 78:257–261

    PubMed  CAS  Google Scholar 

  • Borjesson L, Nordgren S, Delbro DS (1997) DMPP causes relaxation of rat distal colon by a purinergic and nitrergic mechanism. Eur J Pharmacol 334:223–231

    PubMed  CAS  Google Scholar 

  • Bowman A, Drummond AH (1984) Cyclic GMP mediates neurogenic relaxation in the bovine retractor penis muscle. Br J Pharmacol 81:665–674

    PubMed  CAS  Google Scholar 

  • Bowman A, Gillespie JS (1982) Block of some non-adrenergic inhibitory responses of smooth muscle by a substance from haemolysed erythrocytes. J Physiol 328:11–25

    PubMed  CAS  Google Scholar 

  • Bowman A, McGrath JC (1985) The effect of hypoxia on neuroeffector transmission in the bovine retractor penis and rat anococcygeus muscles. Br J Pharmacol 85: 869–875

    PubMed  CAS  Google Scholar 

  • Bowman A, Gillespie JS, Martin W (1979) The inhibitory material in extracts from the bovine retractor penis muscle is not an adenine nucleotide. Br J Pharmacol 67: 327–328

    PubMed  CAS  Google Scholar 

  • Bowman A, Gillespie JS, Martin W (1981) Actions on the cardiovascular system of an inhibitory material extracted from the bovine retractor penis. Br J Pharmacol 72:365–372

    PubMed  CAS  Google Scholar 

  • Bowman A, Gillespie JS, Pollock D (1982) Oxyhaemoglobin blocks non-adrenergic inhibition in the bovine retractor penis muscle. Eur J Pharmacol 85:221–224

    PubMed  CAS  Google Scholar 

  • Bowman A, Gillespie JS, Soares-De-Silva P (1986) A comparison of the actions of endothelium-derived relaxant factor and the inhibitory factor from the bovine retractor penis on rabbit aortic smooth muscle. Br J Pharmacol 87:175–181

    PubMed  CAS  Google Scholar 

  • Brave SR, Bhat S, Hobbs AJ, Tucker JF, Gibson A (1993a) The influence of L-N G-nitroarginine on sympathetic nerve-induced contractions and noradrenaline release in the rat isolated anococcygeus muscle. J Autonomic Pharmacol 13:219–225

    CAS  Google Scholar 

  • Brave SR, Tucker JF, Gibson A, et al. (1993b) Localisation of nitric oxide synthase within nonadrenergic, noncholinergic nerves in the mouse anococcygeus. Neuroscience Lett 161:93–96

    CAS  Google Scholar 

  • Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calcium-requiring enzyme. Proc Natl Acad Sci USA 87:682–685

    PubMed  CAS  Google Scholar 

  • Bredt DS, Hwang PM, Snyder SH (1990) Localisation of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770

    PubMed  CAS  Google Scholar 

  • Brouwer M, Chamulitrat W, Ferruzzi G, Sauls DL, Weinberg JB (1996) Nitric oxide interactions with cobalamins: biochemical and functional consequences. Blood 88:1857–1864

    PubMed  CAS  Google Scholar 

  • Bult H, Boeckxstaens GE, Pelckmans PA, Jordaens FH, Van Maercke YM, Herman AG (1990) Nitric oxide as an inhibitory non-adrenergic, non-cholinergic neurotransmitter. Nature 345:346–347

    PubMed  CAS  Google Scholar 

  • Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    PubMed  CAS  Google Scholar 

  • Burnstock G, Campbell G, Bennett M, Holman ME (1963a) Inhibition of the smooth muscle of the taenia coli. Nature 200:581–582

    PubMed  CAS  Google Scholar 

  • Burnstock G, Campbell G, Bennett M, Holman ME (1963b) The effects of drugs on transmission of inhibition from autonomic nerves to the smooth muscle of the guinea pig taenia coli. Biochem Pharmacol 12:134

    Google Scholar 

  • Byrne NG, Muir TC (1984) Electrical and mechanical responses of the bovine retractor penis to nerve stimulation and to drugs. J Autonom Pharmacol 4:261–271

    CAS  Google Scholar 

  • Carter AJ, Ballard SA, Naylor AM (1998) Effect of the selective phosphodiesterase type 5 inhibitor sildenafil on erectile function in the anaesthetised dog. J Urol 160:242–246

    PubMed  CAS  Google Scholar 

  • Cayabyab FS, Daniel EE (1995) K+ channel opening mediates hyperpolarizations by nitric oxide donors and IJPs in opossum oesophagus. Am J Physiol 31:G831–G842

    Google Scholar 

  • Cellek S, Moncada S (1997a) Modulation of noradrenergic responses by nitric oxide from inducible nitric oxide synthase. Nitric Oxide Biology and Chemistry 1:204–210

    CAS  Google Scholar 

  • Cellek S, Moncada S (1997b) Nitrergic control of peripheral sympathetic responses in the human corpus cavernosum: a comparison with other species. Proc Natl Acad Sci U S A 15:8226–8231

    Google Scholar 

  • Cellek S, Moncada S (1997c) Nitrergic modulation of cholinergic responses in the opossum lower oesophageal sphincter. Br J Pharmacol 122:1043–1046

    PubMed  CAS  Google Scholar 

  • Cellek S, Kasakov L, Moncada S (1996) Inhibition of nitrergic relaxations by a selective inhibitor of the soluble guanylate cyclase. Br J Pharmacol 118:137–140

    PubMed  CAS  Google Scholar 

  • Chakder S, Rattan S (1993) Release of nitric oxide by activation of nonadrenergic noncholinergic neurons of internal anal sphincter. Am J Physiol 264:G7–G12

    PubMed  CAS  Google Scholar 

  • Chen F, Lee TJ-F (1995a) Arginine synthesis from citrulline in perivascular nerves of cerebral artery. J Pharmacol Exp Ther 273:895–901

    PubMed  CAS  Google Scholar 

  • Chen X, Lee TJ-F (1995b) Ginsenoside-induced nitric oxide-mediated relaxation of the rabbit corpus cavernosum. Br J Pharmacol 115:15–18

    PubMed  CAS  Google Scholar 

  • Clapp LH, Gurney AM (1991) Modulation of calcium movements by nitroprusside in isolated vascular smooth muscle cells. Pfluger’s Archiv 418:462–470

    CAS  Google Scholar 

  • Cocco D, Calabrese L, Rigo A, Argese E, Rotilo G (1981) Re-examination of the reaction of diethyldithiocarbamate with the copper of Superoxide dismutase. J Biol Chem 256:8983–8986

    PubMed  CAS  Google Scholar 

  • Crapo JD, Oury TD, Rabouillec C (1992) Copper zinc Superoxide dismutase is primarily a cytosolic protein in human cells. Proc Natl Acad Sci U S A 89:10405–10409

    PubMed  CAS  Google Scholar 

  • Creed KE, Gillespie JS (1977) Some electrical properties of the rabbit anococcygeus muscle and a comparison of the effects of inhibitory nerve stimulation in the rat and rabbit. J Physiol 273:137–153

    PubMed  CAS  Google Scholar 

  • Dail WG, Galloway B, Bordegaray J (1993) NADPH diaphorase innervation of the rat anococcygeus and retractor penis muscles. Neuroscience Lett 160:17–20

    CAS  Google Scholar 

  • Dale HH (1933) Nomenclature of fibres in the autonomic system and their effects. J Physiol 80:10–11

    Google Scholar 

  • Dale HH, Gaddum JH (1930) Reactions of denervated voluntary muscle and their bearing on the mode of action of parasympathetic and related nerves. J Physiol 70:109–144

    PubMed  CAS  Google Scholar 

  • Daniel EE, Haugh C, Woskowska Z, Cipris S, Jury J, Foxthrelkeld JET (1994) Role of nitric oxide-related inhibition in intestine function — relation to vasoactive intestinal polypeptide. Am J Physiol 266:G31–G39

    PubMed  CAS  Google Scholar 

  • De Luca A, Li CG, Rand MJ, Reid JJ, Thaina P, Wong-Dusting HK (1990) Effects of w-conotoxin GVIA on autonomic neuroeffector transmission in various tissues. Br J Pharmacol 101:437–447

    PubMed  Google Scholar 

  • De Man JG, Boeckxstaens GE, Herman AG, Pelckmans PA (1994) Effect of potassium channel blockade and α2-adrenoceptor activation on the release of nitric oxide from non-adrenergic non-cholinergic nerves. Br J Pharmacol 112:341–345

    PubMed  Google Scholar 

  • De Man JG, Boeckxstaens GE, De Winter BY, Moreels TG, Herman AG, Pelckmans PA (1995) Inhibition of nonadrenergic noncholinergic relaxations by nitric oxide donors. Eur J Pharmacol 285:269–274

    PubMed  Google Scholar 

  • De Man JG, De Winter BY, Boeckxstaens GE, Herman AG, Pelckmans PA (1996a) Effect of Cu2+ on relaxations to the nitrergic neurotransmitter, NO and S-nitrosothiols in the rat gastric fundus. Br J Pharmacol 119:990–996

    PubMed  Google Scholar 

  • De Man JG, De Winter BY, Boeckxstaens GE, Herman AG, Pelckmans PA (1996b) Effects of thiol modulators and Cu/Zn Superoxide dismutase inhibition on nitrergic relaxations in the rat gastric fundus. Br J Pharmacol 119:1022–1028

    PubMed  Google Scholar 

  • De Man JG, De Winter BY, Moreels TG, Herman AG, Pelckmans PA (1998) S-nitrosothiols and the nitrergic neurotransmitter in the rat gastric fundus: effect of antioxidants and metal chelation. Br J Pharmacol 123:1039–1046

    PubMed  Google Scholar 

  • Deguchi T, Saito M, Kono M (1978) Blockade by N-methylhydroxylamine of activation of guanylate cyclase and elevations of guanosine 3′,5′-monophosphate levels in nervous tissues. Biochim Biophys Acta 544:8–19

    PubMed  CAS  Google Scholar 

  • Desai KM, Sessa WC, Vane JR (1991) Involvement of nitric oxide in the reflex relaxation of the stomach to accommodate food or fluid. Nature 351:477–479

    PubMed  CAS  Google Scholar 

  • Dicks AP, Swift HR, Williams DHL, Butler AR, Al-Sa’doni HH, Cox BG (1996) Identification of Cu+ as the effective agent in nitric oxide formation from S-nitrosothiols (RSNO). J Chem Soc Perkin Trans 3:481–487

    Google Scholar 

  • Dun NL, Dun SL, Förstermann U, Tseng LF (1992) Nitric oxide synthase immunoreactivity in the rat spinal cord. Neurosci Lett 147:217–220

    PubMed  CAS  Google Scholar 

  • Eccles JC (1964) The physiology of synapses. Springer, Berlin

    Google Scholar 

  • Fahrenkrug J: (1991) Vasoactive intestinal peptide (VIP) and automomic neurotransmission. In: Bell C (ed) Novel peripheral neurotransmitters. Pergamon, New York, pp 113–134

    Google Scholar 

  • Fang S, Christensen J (1995) Manganese Superoxide dismutase and reduced nicotinamide adenine dinucleotide diaphorase colocalize in the rat gut. Gastroenterology 109:1429–1436

    PubMed  CAS  Google Scholar 

  • Feelisch M, Noack EA (1987) Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Eur J Pharmacol 139:19–30

    PubMed  CAS  Google Scholar 

  • Fonseca M, Uddin N, Gibson A (1998) No evidence for a significant non-nitrergic, hyperpolarising factor contribution to field stimulation-induced relaxation of the muose anococcygeus. Br J Pharmacol 124:524–528

    PubMed  CAS  Google Scholar 

  • Foxthrelkeld JET, Woskowska Z, Daniel EE (1997) Sites of nitric oxide (NO) actions in control of circular muscle motility of the perfused isolated canine ileum. Can J Physiol Pharmacol 75:1340–1349

    CAS  Google Scholar 

  • Franck H, Sweeney KM, Sanders KM, Shuttleworth CWR (1997) Effects of a novel guanylate cyclase inhibitor on nitric oxide-dependent inhibitory transmission in canine proximal colon. Br J Pharmacol 122:1223–1229

    PubMed  CAS  Google Scholar 

  • Funk RHW, Mayer B, Worl J (1994) Nitrergic innervation and nitrergic cells in arteriovenous anastomoses. Cell Tiss Res 277:477–484

    CAS  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    PubMed  CAS  Google Scholar 

  • Furness JB, Bornstein JC, Murpht R, Pompolo S (1992a) Roles of peptides in transmission in the enteric nervous system. Trends Neurosci 15:66–71

    PubMed  CAS  Google Scholar 

  • Furness JB, Pompolo S, Shuttleworth CWR, Burleigh DE (1992b) Light-and electronmicroscopic immunohistochemical analysis of nerve fibre types innervating the taenia coli of the gunea pig caecum. Cell Tissue Res 270:125–137

    PubMed  CAS  Google Scholar 

  • Garthwaite J, Southam E, Boulton CL, Nielsen EB, Schmidt K, Mayer B (1995) Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by lH-[l,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Mol Pharmacol 48:184–188

    PubMed  CAS  Google Scholar 

  • Gibson A, James TA (1977) The nature of potassium chloride-induced relaxations of the rat anococcygeus muscle. Br J Pharmacol 60:141–145

    PubMed  CAS  Google Scholar 

  • Gibson A, Lilley E (1997) Superoxide anions, free radical scavengers, and nitrergic neurotransmission. Gen Pharmacol 28:489–493

    PubMed  CAS  Google Scholar 

  • Gibson A, Mirzazadeh S (1989) N-methyl-hydroxylamine inhibits and MandB 22948 potentiates relaxations of the mouse anococcygeus muscle to non-adrenergic, noncholinergic field stimulation and nitrovasodilator drugs. Br J Pharmacol 96:637–644

    PubMed  CAS  Google Scholar 

  • Gibson A, Wedmore CV (1981) Responses of the isolated anococcygeus muscle of the mouse to drugs and to field stimulation. J Autonomic Nervous System 1:225–233

    CAS  Google Scholar 

  • Gibson A, Mirzazadeh S, Hobbs AJ, Moore PK (1990) L-N G-monomethyl arginine and L-N G-nitro arginine inhibit non-adrenergic, non-cholinergic relaxation of the mouse anococcygeus muscle. Br J Pharmacol 99:602–606

    PubMed  CAS  Google Scholar 

  • Gibson A, Babbedge RC, Brave SR, et al. (1992) An investigation of some S-nitrosothiols, and of hydroxy-arginine, on the mouse anococcygeus. Br J Pharmacol 107: 715–721

    PubMed  CAS  Google Scholar 

  • Gibson A, Brave SR, McFadzean I, Mirzazadeh S, Tucker JF, Wayman C (1994a) Nitrergic stimulation does not inhibit carbachol-induced inositol phosphate generation in the rat anococcygeus. Neurosci Lett 178:35–38

    PubMed  CAS  Google Scholar 

  • Gibson A, McFadzean I, Tucker JF, Wayman C (1994b) Variable potency of nitrergicnitrovasodilator relaxations of the mouse anococcygeus against different forms of induced tone. Br J Pharmacol 113:1494–1500

    PubMed  CAS  Google Scholar 

  • Gibson A, Brave SR, McFadzean I, Tucker JF, Wayman C (1995) The nitrergic transmitter of the anococcygeus — NO or not? Arch Int Pharmacodyn Therap 329:39–51

    CAS  Google Scholar 

  • Gibson QH, Roughton FJW (1957) The kinetics and equilibria of the reactions of nitric oxide with sheep haemoglobin. J Physiol 136:507–526

    PubMed  CAS  Google Scholar 

  • Gillespie JS (1972) The rat anococcygeus muscle and its response to nerve stimulation and to some drugs. Br J Pharmacol 45:404–416

    PubMed  CAS  Google Scholar 

  • Gillespie JS, Martin W (1980) A smooth muscle inhibitory material from the bovine retractor penis and rat anococcygeus muscles. J Physiol 309:55–64

    PubMed  CAS  Google Scholar 

  • Gillespie JS, Sheng H (1990) The effects of pyrogallol and hydroquinone on the response to NANC nerve stimulation in the rat anococcygeus and bovine retractor penis muscles. Br J Pharmacol 99:194–196

    PubMed  CAS  Google Scholar 

  • Gillespie JS, Tilmisanay AK (1976) The action of tetraethylammonium chloride on the reponse of the rat anococcygeus muscle to motor and inhibitory nerve stimulation and to some drugs. Br J Pharmacol 58:47–55

    PubMed  CAS  Google Scholar 

  • Gillespie JS, Hunter JC, Martin W (1981) Some chemical and physical properties of the smooth muscle inhibitory factor in extracts of the bovine retractor penis muscle. J Physiol 315:111–125

    PubMed  CAS  Google Scholar 

  • Gillespie JS, Hunter JC, McKnight AT (1982) The effects of ethanol on inhibitory and motor responses in the rat and rabbit anococcygeus and the bovine retractor penis muscles. Br J Pharmacol 75:189–198

    PubMed  CAS  Google Scholar 

  • Gillespie JS, Liu X, Martin W (1989) The effects of L-arginine and N G-monomethyl L-arginine on the response of the rat anococcygeus to NANC nerve stimulation. Br J Pharmacol 98:1080–1082

    PubMed  CAS  Google Scholar 

  • Gillespie JS, Liu X, Martin W (1990) The neurotransmitter of the non-adrenergic, noncholinergic inhibitory nerves to smooth muscle of the genital system. In: Moncada S, Higgs EA (eds) Nitric oxide from L-arginine: a bioregulatory system. Elsevier, Amsterdam, pp 147–164

    Google Scholar 

  • Gocmen C, Ucar P, Singirik E, Dikmen A, Baysal F (1997) An in vitro study of nonadrenergic-noncholinergic activity on the cavernous tissue of mouse. Urological Res 25:269–275

    CAS  Google Scholar 

  • Goldstein I, Lue TF, PadmaNathan H, Rosen RC, Steers WD (1998) Oral sildenafil in the treatment of erectile dysfunction. New Eng J Med 338:1397–1404

    PubMed  CAS  Google Scholar 

  • Gong JP, Gwee MCE, Gopalakrishnakone P, Kini RM, Chung MCM (1997) Adrenergic and nitrergic responses of the rat isolated anococcygeus muscle to a new toxin (makatoxin I) from the venom of the scorpion Buthus martensi Karsai. J Autonom Pharmacol 17:129–135

    CAS  Google Scholar 

  • Gonzalez C, Barroso C, Martin C, Gulbenkian S, Estrada C (1997) Neuronal nitric oxide synthase activation by vasoactive intestinal peptide in bovine cerebral arteries. J Cereb Blood Flow Metab 17:977–984

    PubMed  CAS  Google Scholar 

  • Gotoh N, Niki E (1992) Rates of interactions of Superoxide with vitamin E, vitamin C, and related compounds measured by chemiluminescence. Biochim Biophys Acta 1115:201–207

    PubMed  CAS  Google Scholar 

  • Grider JR, Murthy KS, Jin J-G, Makhlouf GM (1992) Stimulation of nitric oxide from muscle cells by VIP: prejunctional enhancement of VIP release. Am J Physiol 262:G774–G778

    PubMed  CAS  Google Scholar 

  • Guo RS, Nada O, Suita S, Taguchi T, Masumoto K (1997) The distribution and colocalisation of nitric oxide synthase and vasoactive intestinal polypeptide in nerves of the colons with Hirschsprung’s disease. Virchows Archiv Int J Pathol 430:53–61

    CAS  Google Scholar 

  • Gwee MCE, Cheah LS, Gopalakrishnakone P, Wong PTH, Gong JP, Kini RM (1996) Studies on venoms from the black scorpion Heterometrus longimanus and some other scorpion species. J Toxicol Toxin Rev 15:37–57

    CAS  Google Scholar 

  • Handy RLC, Harb HL, Wallace P, Gaffen Z, Whitehead KJ, Moore PK (1996) Inhibition of nitric oxide synthase by 1-(2-trifluoromethylphenyl) imidazole (TRIM) in vitro: antinociceptive and cardiovascular effects. Br J Pharmacol 119: 423–431

    PubMed  CAS  Google Scholar 

  • Harrison JS, McSwinney BA (1936) The chemical transmitter of motor impulses to the stomach. J Physiol 87:79–86

    PubMed  CAS  Google Scholar 

  • Hernandez M, Prieto D, Orensanz FM, et al. (1997) Involvement of a glibenclamidesensitive mechanism in the nitrergic neurotransmission of the pig intravesical ureter. Br J Pharmacol 120:609–616

    PubMed  CAS  Google Scholar 

  • Hobbs AJ, Gibson A (1990) L-N G-nitro-L-arginine and its methyl ester are potent inhibitors of non-adrenergic, non-cholinergic transmission in the rat anococcygeus. Br J Pharmacol 100:749–752

    PubMed  CAS  Google Scholar 

  • Hobbs AJ, Tucker JF, Gibson A (1991) Differentiation by hydroquinone of relaxations induced by exogenous and endogenous nitrates in non-vascular smooth muscle. Br J Pharmacol 104:645–650

    PubMed  CAS  Google Scholar 

  • Hoyo Y, Giraldo J, Vila E (1997) Effects of L-N G-nitro-arginine on noradrenaline induced contraction in the rat anococcygeus muscle. Br J Pharmacol 120: 1035–1038

    PubMed  CAS  Google Scholar 

  • Huang PL, Dawson TM, Bredt DS, Snyder SH, Fishman MC (1993) Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75:1273–1286

    PubMed  CAS  Google Scholar 

  • Huizinga JD,Tomlinson J, Pinto-Quezada J (1992) Involvement of nitric oxide in nervemediated inhibition and action of vasoactive intestinal peptide in colonic smooth muscle. J Pharmacol Exp Ther 260:803–808

    PubMed  CAS  Google Scholar 

  • Ignarro LJ, Bush PA, Buga GM, Wood KS, Fukuto JM, Rafer J (1990) Nitric oxide and cyclic GMP formation upon electrical field stimulation cause relaxation of corpus cavernosum smooth muscle. Biochem Biophys Res Commun 170:843–850

    PubMed  CAS  Google Scholar 

  • Ivancheva C, Radomirov R (1996) Met-enkephalin-dependent nitrergically mediated relaxation in the guinea-pig ileum. Methods and Findings in Experimental and Clinical Pharmacology 18:521–525

    PubMed  CAS  Google Scholar 

  • Jang CS (1940) The potentiation and paralysis of adrenergic effects by ergotoxine and other substances. J Pharmacol Exp Ther 71:87–94

    Google Scholar 

  • Jen PHY, Dixon JS, Gearhart JP, Gosling JA (1996) Nitric oxide synthase and tyrosine hydroxylase are colocalised in nerves supplying the postnatal human male genitourinary organs. J Urol 155:1117–1121

    PubMed  CAS  Google Scholar 

  • Jenkinson KM, Reid JJ, Rand MJ (1995) Hydroxocobalamin and hemoglobin differentiate between exogenous and neuronal nitric oxide in the rat gastric fundus. Eur J Pharmacol 275:145–152

    PubMed  CAS  Google Scholar 

  • Jeremy JY, Ballard SA, Naylor AM, Miller MAW, Angelini GD (1997) Effects of sildenafil, a type 5 cGMP phosphodiesterase inhibitor, and papaverine on cyclic GMP and cyclic GMP levels in the rabbit corpus cavernosum in vitro. Br J Urol 79: 958–963

    PubMed  CAS  Google Scholar 

  • Jiang F, Li CG, Rand MJ (1998) Role of potassium channels in the nitrergic nerve stimulation-induced vasodilatation in the guinea-pig isolated basilar artery. Br J Pharmacol 123:106–112

    PubMed  CAS  Google Scholar 

  • Kaczka EA, Wolf DE, Kuehl FAJ, Folkers K (1951) Vitamin B12. Modifications of cyano-cobalamin. J Am Chem Soc 73:3569–3572

    CAS  Google Scholar 

  • Kasakov L, Belai A, Vlaskovska M, Burnstock G (1994) Noradrenergic-nitrergic interactions in the rat anococcygeus muscle — evidence for post-junctional modulation by nitric oxide. Br J Pharmacol 112:403–410

    PubMed  CAS  Google Scholar 

  • Kasakov L, Cellek S, Moncada S (1995) Characterisation of nitrergic neurotransmission during short-term and long-term electrical stimulation of the rabbit anococcygeus muscle. Br J Pharmacol 115:1149–1154

    PubMed  CAS  Google Scholar 

  • Keef KD, Shuttleworth CWR, Xue C, Bayguinov O, Publicover NG, Sanders KM (1994) Relationship between nitric oxide and vasoactive intestinal polypeptide in enteric inhibitory neurotransmission. Neuropharmacol 33:1303–1314

    CAS  Google Scholar 

  • Kelm M, Schrader J (1990) Control of coronary vascular tone by nitric oxide. Circ Res 66:1561–1575

    PubMed  CAS  Google Scholar 

  • Keiner MJ, Bagnell R, Hale B, Alexander NM (1989) Inactivation of intracellular copper-zinc Superoxide dismutase by copper chelating agents without glutathione depletion and met-hemoglobin formation. Free Radical Biol Med 6:355–360

    Google Scholar 

  • Kerr SW, Buchanan LV, Bunting S, Mathews WR (1993) Evidence that S-nitrosothiols are responsible for the smooth muscle relaxant activity of the bovine retractor penis inhibitory factor. J Pharmacol Exp Ther 263:285–292

    Google Scholar 

  • Kitamura K, Lian Q, Carl A, Kuriyama H (1993) S-nitrosocysteine, but not sodium nitroprusside, produces apamin-sensitive hyperpolarisation in rat gastric fundus. Br J Pharmacol 109:415–425

    PubMed  CAS  Google Scholar 

  • Klinge E, Sjostrand NO (1974) Contraction and relaxation of the retractor penis muscle and penile artery of the bull. Acta Physiol Scand Suppl 420:1–88

    PubMed  CAS  Google Scholar 

  • Knowles RG, Palacios M, Palmer RMJ, Moncada S (1989) Formation of nitric oxide from L-arginine in the central nervous system: A transduction system for the stimulation of soluble guanylate cyclase. Proc Natl Acad Sci USA 86:5159–5162

    PubMed  CAS  Google Scholar 

  • Knudsen MA, Svane D, Totrup A (1992) Action profiles of nitric oxide, S-nitroso-cysteine, SNP, and NANC responses in opossum lower esophageal sphincter. Am J Physiol 262:G840–G846

    PubMed  CAS  Google Scholar 

  • Kobzic L, Reid MB, Bredt DS, Stamler JS (1994) Nitric oxide in skeletal muscle. Nature 372:546–548

    Google Scholar 

  • Koh SD, Campbell JD, Carl A, Sanders KM (1995) Nitric oxide activates multiple potassium channels in canine colonic smooth muscle. J Physiol 489:735–743

    PubMed  CAS  Google Scholar 

  • Kojima S, Sakato M, Shimo Y (1988) An α2-adrenoceptor-mediated inhibition of nonadrenergic non-cholinergic responses of the isolated proximal colon of the guineapig. Asia Pac J Pharmacol 3:69–75

    CAS  Google Scholar 

  • La M, Li CG, Rand MJ (1996) Comparison of the effects of hydroxocobalamin and oxyhaemoglobin on responses to NO, EDRF and the nitrergic transmitter. Br J Pharmacol 117:805–810

    PubMed  CAS  Google Scholar 

  • La M, Paisley K, Martin W, Rand MJ (1997) Effects of hydroxocobalamin on nitrergic transmission in rat anococcygeus and bovine retractor penis muscles: sensitivity to light. Eur J Pharmacol 321:R5–R6

    PubMed  CAS  Google Scholar 

  • Langley JN (1898) On the inhibitory fibres in the vagus to the end of the oesophagus and stomach. J Physiol 23:407–414

    PubMed  CAS  Google Scholar 

  • Langley JN, Anderson HK (1895) The innervation of the pelvic and adjoining viscera Part III. J Physiol 19:85–121

    Google Scholar 

  • Lee TJ-F, Sarwinski S, Ishine T, Lai CC, Chen FY (1996) Inhibition of cerebral neurogenic vasodilatation by L-glutamine and nitric oxide synthase inhibitors and its reversal by L-citrulline. J Pharmacol Exp Ther 276:353–358

    PubMed  CAS  Google Scholar 

  • Lefebvre RA (1996) Influence of Superoxide dismutase inhibition on the discrimination between NO and the nitrergic neurotransmitter in the rat gastric fundus. Br J Pharmacol 118:2171–2177

    PubMed  CAS  Google Scholar 

  • Lefebvre RA (1997) Nitric oxide as a non-adrenergic non-cholinergic neurotransmitter in gastrointestinal motility. Periodicum Biologorum 99:455–459

    CAS  Google Scholar 

  • Lefebvre RA, Smits GJM (1992) Modulation of non-adrenergic non-cholinergic inhibitory transmission in rat gastric fundus by the α2-adrenoceptor agonist, UK 14,304. Br J Pharmacol 107:256–261

    PubMed  CAS  Google Scholar 

  • Lefebvre RA, Vandekerckhove K (1998) Effect of nitroglycerin and long-term electrical stimulation on nitrergic relaxation in the pig gastric fundus. Br J Pharmacol 123:143–149

    PubMed  CAS  Google Scholar 

  • Lefebvre RA, Smits GJM Timmermans J-P (1995) Study of NO and VIP as non-adrenercic non-cholinergic neurotransmitters in the pig gastric fundus. Br J Pharmacol 116:2017–2026

    PubMed  CAS  Google Scholar 

  • Li CG, Rand MJ (1989) Evidence for a role of nitric oxide in the neurotransmitter system mediating relaxation of the rat anococcygeus muscle. Clin Exp Pharmacol Physiol 16:933–938

    PubMed  CAS  Google Scholar 

  • Li CG, Rand MJ (1990) Nitric oxide and vasoactive intestinal polypeptide mediate nonadrenergic, non-cholinergic inhibitory transmission to smooth muscle of the rat gastric fundus. Eur J Pharmacol 191:303–309

    PubMed  CAS  Google Scholar 

  • Li CG, Rand MJ (1991) Evidence that part of the NANC relaxant response of guineapig trachea to electrical field stimulation is mediated by nitric oxide. Br J Pharmacol 102:91–94

    PubMed  CAS  Google Scholar 

  • Li CG, Rand MJ (1996) Inhibition of NO-mediated responses by 7-ethoxyresorufin, a substrate and competitive inhibitor of cytochrome P450. Br J Pharmacol 118:57–62

    PubMed  CAS  Google Scholar 

  • Li CG, Brosch SF, Rand MJ (1994) Inhibition by ethacrynic acid of NO-mediated relaxations of the rat anococcygeus muscle. Clin Exp Pharmacol Physiol 21:293–299

    PubMed  CAS  Google Scholar 

  • Lilley E, Gibson A (1995) Inhibition of relaxations to nitrergic stimulation of the mouse anococcygeus by duroquinone. Br J Pharmacol 116:3231–3236

    PubMed  CAS  Google Scholar 

  • Lilley E, Gibson A (1996) Antioxidant protection of NO-induced relaxations of the mouse anococcygeus against inhibition by Superoxide anions, hydroquinone and carboxy-PTIO. Br J Pharmacol 119:432–438

    PubMed  CAS  Google Scholar 

  • Lilley E, Gibson A (1997) Release of the antioxidants ascorbate and urate from a nitrergically-innervated smooth muscle. Br J Pharmacol 122:1746–1752

    PubMed  CAS  Google Scholar 

  • Lin Y-Q, Bennett MR (1994) Nitric oxide modulation of quantal secretion in chick ciliary ganglia. J Physiol 481:385–394

    PubMed  CAS  Google Scholar 

  • Lincoln TM (1989) Cyclic GMP and mechanisms of relaxation. Pharmacol Ther 41:479–502

    PubMed  CAS  Google Scholar 

  • Lincoln TM, Cornwell TL (1993) Intracellular cyclic GMP receptor proteins. FASEB J 7:328–338

    PubMed  CAS  Google Scholar 

  • Liu SF, Crawley DE, Rohde JAL, Evans TW, Barnes PJ (1992) Role of nitric oxide and guanosine 3,5-cyclic monophosphate in mediating nonadrenergic, noncholinergic relaxation in guinea-pig pulmonary arteries. Br J Pharmacol 107:861–866

    PubMed  CAS  Google Scholar 

  • Liu X, Gillespie JS, Gibson IF, Martin W (1991) Effects of N G-substituted analogues of L-arginine on NANC relaxation of the rat anococcygeus and bovine retractor penis muscles and the bovine penile artery. Br J Pharmacol 104:53–58

    PubMed  CAS  Google Scholar 

  • Liu X, Gillespie JS, Martin W (1994) Non-adrenergic, non-cholinergic relaxation of the bovine retractor penis muscle: role of S-nitrosothiols. Br J Pharmacol 111: 1287–1295

    PubMed  CAS  Google Scholar 

  • Liu X, Miller SM, Szurszewski JH (1997) Protection of nitrergic neurotransmission by and colocalisation of neural nitric oxide synthase with copper zinc Superoxide dismutase. J Autonomic Nervous System 62:126–133

    CAS  Google Scholar 

  • Liuking YC, Weusten BLAM, Portincasa P, Van Der Meer R, Smout AJPM, Akkermans LMA (1998) Effects of long-term oral L-arginine on esophageal motility and gallbladder dynamics in healthy humans. Am J Physiol 37:G984–G991

    Google Scholar 

  • Luduena FP, Grigas EO (1966) Pharmacological study of autonomic innervation of dog retractor penis. Am J Physiol 210:435–444

    PubMed  CAS  Google Scholar 

  • Lumme A, Vanhatalo S, Soinila S (1996) Axonal transport of nitric oxide synthase in autonomic nerves. J Autonomic Nervous System 56:207–214

    CAS  Google Scholar 

  • Lundberg JM (1996) Pharmacology of cotransmission in the autonomic nervous system — integrative aspects on amines, neuropeptides, adenosine triphosphate, amino acids and nitric oxide. Pharmacol Rev 48:113–178

    PubMed  CAS  Google Scholar 

  • Luo D, Das S, Vincent SR (1995) Effects of methylene blue and LY83583 on neuronal nitric oxide synthase and NADPH-diaphorase. Eur J Pharmacol 290: 247–251

    PubMed  CAS  Google Scholar 

  • Maekawa H, Matsumura Y, Matsuo G, Morimoto S (1996) Effect of sodium nitroprusside on norepinephrine overflow and antidiuresis induced by stimulation of renal nerves in anesthetised dogs. J Cardiovasc Pharmacol 27:211–217

    PubMed  CAS  Google Scholar 

  • Maggi CA, Manzini S, Meli A (1984) Evidence that GABAA receptors mediate relaxation of rat duodenum by activating intramural nonadrenergic noncholinergic neurons. J Autonom Pharmacol 4:77–81

    CAS  Google Scholar 

  • Marczin N, Ryan US, Catravas JD (1992) Methylene blue inhibits nitrovasodilator-and endothelium-derived relaxing factor-induced cyclic GMP accumulation in cultured pulmonary arterial smooth muscle cells via generation of Superoxide anion. J Pharmacol Exp Ther 263:170–179

    PubMed  CAS  Google Scholar 

  • Marklund SL (1984) Extracellular Superoxide dismutase in human tissues and cell lines. J Clin Invest 74:1398–1403

    PubMed  CAS  Google Scholar 

  • Martin W, Gillespie JS (1991) L-arginine-derived nitric oxide: the basis of inhibitory transmission in the anococcygeus and retractor penis muscles. In: Bell C (ed) Novel peripheral neurotransmitters. Pergamon, New York, pp 65–79

    Google Scholar 

  • Martin W, Villani GM, Jothianandan D, Furchgott RF (1985a) Blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation of rabbit aorta by certain ferrous hemoproteins. J Pharmacol Exp Ther 233:679–685

    PubMed  CAS  Google Scholar 

  • Martin W, Villani GM, Jothianandan D, Furchgott RF (1985b) Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J Pharmacol Exp Ther 232:708–716

    PubMed  CAS  Google Scholar 

  • Martin W, Furchgott RF, Villani GM, Jothianandan D (1986) Phosphodiesterase inhibitors induce endothelium-dependent relaxation of rat and rabbit aorta by potentiating the effects of spontaneously released endothelium-derived relaxing factor. J Pharmacol Exp Ther 237:539–547

    PubMed  CAS  Google Scholar 

  • Martin W, Gibson IF, Gillespie JS, Liu X (1991a) Nitric oxide as a neurotransmitter in smooth muscle. In: Stone TW (ed) Aspects of synaptic transmission. Taylor and Francis, London, pp 258–282

    Google Scholar 

  • Martin W, Gillespie JS, Liu X, Gibson IF (1991b) Effects of N G-substituted analogues of L-arginine on NANC relaxation of the anococcygeus, retractor penis and penile artery. Br J Pharmacol 102:83P

    Google Scholar 

  • Martin W, Gillespie JS, Gibson IF (1993) Actions and interactions of N G-substituted analogues of L-arginine on NANC neurotransmission in the bovine retractor penis and rat anococcygeus muscles. Br J Pharmacol 108:242–247

    PubMed  CAS  Google Scholar 

  • Martin W, McAllister HM, Paisley K (1994) NANC neurotransmission in the bovine retractor penis muscle is blocked by Superoxide anion following inhibition of Superoxide dismutase with diethyldithiocarbamate. Neuropharmacology 33: 1293–1301

    PubMed  CAS  Google Scholar 

  • Mashimo H, Xue DH, Huang PL, Fishman MC, Goyal RK (1996) Neuronal constitutive nitric oxide synthase is involved in murine enteric inhibitory neurotransmission. J Clin Invest 98:8–13

    PubMed  CAS  Google Scholar 

  • Matthew JD, Wadsworth RM (1997) The role of nitric oxide in inhibitory neurotransmission in the middle cerebral artery of the sheep. Gen Pharmacol 28:393–399

    PubMed  CAS  Google Scholar 

  • Mayer B, John M, Bohme E (1990) Purification of a Ca2+/calmodulin-dependent nitric oxide synthase from porcine cerebellum. FEBS Lett 277:215–219

    PubMed  CAS  Google Scholar 

  • Mirzazadeh S, Hobbs AJ, Tucker JF, Gibson A (1991) Cyclic nucleotide content of the rat anococcygeus during relaxations induced by drugs or by non-adrenergic, noncholinergic field stimulation. J Pharm Pharmacol 43:247–257

    PubMed  CAS  Google Scholar 

  • Misawa M, Sato J (1997) Abnormal modulation of cholinergic neurotransmission by endogenous nitric oxide in the bronchus of rats with hyper-responsiveness induced by allergen challenge. Jpn J Pharmacol 73:125–132

    PubMed  CAS  Google Scholar 

  • Mitchell JA, Förstermann U, Warner TD, et al. (1991a) Endothelial cells have a particulate enzyme system responsible for EDRF formation: measurement by vascular relaxation. Biochem Biophys Res Commun 176:1417–1423

    PubMed  CAS  Google Scholar 

  • Mitchell JA, Sheng H, Förstermann U, Murad F (1991b) Characterisation of nitric oxide synthases in non-adrenergic, non-cholinergic nerve containing tissue from the rat anococcygeus muscle. Br J Pharmacol 104:289–291

    PubMed  CAS  Google Scholar 

  • Mok JSL, Paisley K, Martin W (1998) Inhibition of nitrergic neurotransmission in the bovine retractor penis muscle by an oxidant stress: effects of Superoxide dismutase mimetics. Br J Pharmacol 124:111–118

    PubMed  CAS  Google Scholar 

  • Moncada S, Higgs EA, Furchgott RF (1997) International Union of Pharmacology nomenclature in nitric oxide research. Pharmacol Rev 49:137–142

    PubMed  CAS  Google Scholar 

  • Moore PK, al-Swayeh OA, Chong NWS, Evans RA, Gibson A (1990) L-N G-nitroarginine (L-NOARG), a novel, L-arginine-reversible inhibitor of endothelium-dependent relaxation in vitro. Br J Pharmacol 99:408–412

    PubMed  CAS  Google Scholar 

  • Moore PK, Babbedge RC, Wallace P, Gaffen ZA, Hart SL (1993a) 7-Nitroindazole, an inhibitor of nitric oxide synthase, exhibits anti-nociceptive activity in the mouse without increasing blood pressure. Br J Pharmacol 108:296–297

    PubMed  CAS  Google Scholar 

  • Moore PK, Wallace P, Gaffen Z, Hart SL, Babbedge RC (1993b) Characterization of the novel nitric oxide synthase inhibitor 7-nitro indazole and related indazoles: antinociceptive and cardiovascular effects. Br J Pharmacol 110:219–224

    PubMed  CAS  Google Scholar 

  • Moreland RB, Goldstein I, Traish A (1998) Sildenafil, a novel inhibitor of phosphodiesterase type 5 in human corpus cavernosum smooth muscle cells. Life Sci 62:309–318

    Google Scholar 

  • Mudumbi RV, Parmeter LL, Mclntyre MS, Leighton HJ (1996) Interactions between neurotransmitters and exogenous norepinephrine in isolated rat anococcygeus muscle. Gen Pharmacol 27:193–197

    PubMed  CAS  Google Scholar 

  • Mülsch A, Busse R, Liebau S, Förstermann U (1988) LY 83583 interferes with the release of the endothelium-derived relaxing factor and inhibits soluble guanylate cyclase. J Pharmacol Exp Ther 247:283–288

    PubMed  Google Scholar 

  • Nakane M, Mitchell JA, Förstermann U, Murad F (1991) Phosphorylation by calcium calmodulin-dependent protein kinase II and protein kinase C modulates the activity of nitric oxide synthase. Biochem Biophys Res Commun 180:1396–1407

    PubMed  CAS  Google Scholar 

  • Nakane M, Schmidt HHHW, Pollock JS, Förstermann U, Murad F (1993) Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Lett 316:175–180

    PubMed  CAS  Google Scholar 

  • Ny L, Alm P, Ekström P, Larsson B, Grundemar L, Andersson K-E (1996) Localization and activity of haem oxygenase and functional effects of carbon monoxide in the feline lower oesophageal sphincter. Br J Pharmacol 118:392–399

    PubMed  CAS  Google Scholar 

  • Ohno N, Xue L, Yamamoto Y, Suzuki H (1996) Properties of the inhibitory junction potential in smooth muscle of the guinea-pig gastric fundus. Br J Pharmacol 117:974–978

    PubMed  CAS  Google Scholar 

  • Okamura T, Yoshida K, Toda N (1995) Nitroxidergic innervation in dog and monkey renal arteries. Hypertension 25:1090–1095

    PubMed  CAS  Google Scholar 

  • Olgart C, Hallen K, Wiklund NP, Iversen HH, Gustafsson LE (1998) Blockade of nitrergic neuroeffector transmission in guinea-pig colon by a selective inhibitor of soluble guanylate cyclase. Acta Physiol Scand 162:89–95

    PubMed  CAS  Google Scholar 

  • Paisley K, Martin W (1996) Blockade of nitrergic transmission by hydroquinone, hydroxocobalamin and carboxy-PTIO in bovine retractor penis: role of superoxide anion. Br J Pharmacol 117:1633–1638

    PubMed  CAS  Google Scholar 

  • Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    PubMed  CAS  Google Scholar 

  • Palmer RMJ, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesise nitric oxide from L-arginine. Nature 333:664–666

    PubMed  CAS  Google Scholar 

  • Persson K, Alm P, Johansson K, Larsson B, Andersson K-E (1995) Co-existence of nitrergic, peptidergic and acetylcholine esterase-positive nerves in the pig lower urinary tract. J Autonomic Nervous System 52:225–236

    CAS  Google Scholar 

  • Pickard RS, Powell PH, Zar MA (1991) The effect of inhibitors of nitric oxide biosynthesis and cyclic GMP formation on nerve evoked relaxation of human cavernosal smooth muscle. Br J Pharmacol 104:755–759

    PubMed  CAS  Google Scholar 

  • Pinna C, Puglisi L, Burnstock G (1998) ATP and vasoactive intestinal polypeptide relaxant responses in hamster isolated proximal urethra. Br J Pharmacol 124: 1069–1074

    PubMed  CAS  Google Scholar 

  • Pino RZ, Feelisch M (1994) Bioassay discrimination between nitric oxide (NO) and nitroxyl (NO-) using L-cysteine. Biochem Biophys Res Commun 201:54–62

    PubMed  CAS  Google Scholar 

  • Potter E: (1998) Neuropeptide Y as an autonomic transmitter. In: Bell C (ed) Novel peripheral neurotransmitters. Pergamon, New York, pp 81–112

    Google Scholar 

  • Rajanayagam MAS, Li CG, Rand MJ (1993) Differential effects of hydroxocobalamin on NO-mediated relaxations in rat aorta and anococcygeus muscle. Br J Pharmacol 108:3–5

    PubMed  CAS  Google Scholar 

  • Ramagopal MV, Leighton HJ (1989) Effect of N G-monomethyl-L-arginine on field stimulation-induced decreases in cytosolic Ca2+ levels and relaxation in the rat anococcygeus muscle. Eur J Pharmacol 174:297–299

    PubMed  CAS  Google Scholar 

  • Rand MJ (1992) Nitrergic transmission: nitric oxide as a mediator of non-adrenergic, non-cholinergic neuroeffector transmission. Clin Exp Pharmacol 19:147–169

    CAS  Google Scholar 

  • Rand MJ, Li CG (1992) Effects of arginosuccinic acid on nitric oxide mediated relaxations in rat aorta and anococcygeus muscle. Clin Exp Pharmacol Physiol 19:331–334

    PubMed  CAS  Google Scholar 

  • Rand MJ, Li CG (1993a) The inhibition of nitric oxide-mediated relaxations in rat aorta and anococcygeus muscle by diphenylene iodonium. Clin Exp Pharmacol Physiol 20:141–148

    PubMed  CAS  Google Scholar 

  • Rand MJ, Li CG (1993b) Modulation of acetylcholine-induced contractions of the rat anococcygeus muscle by activation of nitrergic nerves. Br J Pharmacol 110: 1479–1482

    PubMed  CAS  Google Scholar 

  • Rand MJ, Li CG (1994a) Differential effects of hydroxocobalamin on relaxations induced by nitrosothiols in rat aorta and anococcygeus muscles. Eur J Pharmacol 241:294–355

    Google Scholar 

  • Rand MJ, Li CG (1994b) Effects of ethanol and other aliphatic alcohols on NO-mediated relaxations in rat anococcygeus muscles and gastric fundus. Br J Pharmacol 111:1089–1094

    PubMed  CAS  Google Scholar 

  • Rand MJ, Li CG (1995a) Discrimination by the NO-trapping agent, carboxy-PTIO, between NO and the nitrergic transmitter but not between NO and EDRF. Br J Pharmacol 116:1906–1910

    PubMed  CAS  Google Scholar 

  • Rand MJ, Li CG (1995b) Nitric oxide as a neurotransmitter in peripheral nerves: nature of transmitter and mechanism of transmission. Ann Rev Physiol 57:659–682

    CAS  Google Scholar 

  • Rapoport RM, Murad F (1983) Agonist-induced endothelium-dependent relaxation may be mediated through cyclic GMP. Circ Res 52:352–357

    PubMed  CAS  Google Scholar 

  • Rattan S, Rosenthal GJ, Chakder S (1995) Human recombinant hemoglobin (rHb1.1) inhibits nonadrenergic noncholinergic (NANC) nerve-mediated relaxation of internal anal sphincter. J Pharmacol Exp Ther 272:1211–1216

    PubMed  CAS  Google Scholar 

  • Rattan S, Chakder S (1993) Inhibitory effects of CO on internal anal sphincter: heme oxygenase inhibitor inhibits NANC relaxation. Am J Physiol 265:G799–G804

    PubMed  CAS  Google Scholar 

  • Rattan S, Chakder S (1997) L-citrulline recycling in the opossum internal anal sphincter: relaxation by nonadrenergic, noncholinergic nerve stimulation. Gastroenterology 112:1250–1259

    PubMed  CAS  Google Scholar 

  • Raymond GL, Wendt IR (1996) Force and intracellular Ca2+ during cyclic nucleotidemediated relaxation of rat anococcygeus muscle and the effects of cyclopiazonic acid. Br J Pharmacol 119:1029–1037

    PubMed  CAS  Google Scholar 

  • Recio P, Lopez PG, Hernandez M, Prieto D, Contreras J (1998) Nitrergic relaxation of the horse corpus cavernosum. Role of cGMP. Eur J Pharmacol 351:85–94

    CAS  Google Scholar 

  • Rees DD, Palmer RMJ, Hodson HF, Moncada S (1989) A specific inhibitor of nitric oxide formation form L-arginine attenuates endothelium-dependent relaxations. Br J Pharmacol 96:418–424

    PubMed  CAS  Google Scholar 

  • Rees DD, Palmer RMJ, Schulz R, Hodson HF, Moncada S (1990) Characterisation of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol 101:746–752

    PubMed  CAS  Google Scholar 

  • Rengasamay A, Johns RA (1998) Regulation of nitric oxide synthase by nitric oxide. Mol Pharmacol 44:124–128

    Google Scholar 

  • Rogers NE, Ignarro LJ (1992) Constitutive nitric oxide synthase from cerebellum is reversibly inhibited by nitric oxide formed from L-arginine. Biochem Biophys Res Commun 189:242–249

    PubMed  CAS  Google Scholar 

  • Schmidt HHHW, Pollock JS, Nakane M, Gorsky LD, Förstermann U, Murad F (1991) Purification of a soluble isoform of guanylyl cyclase-activating factor synthase. Proc Natl Acad Sci U S A 88:365–369

    PubMed  CAS  Google Scholar 

  • Schmidt HHHW, Gagne GD, Nakane M, Pollock JS, Miller MF, Murad F (1992a) Mapping of neural nitric oxide synthase in the rat suggests frequent co-localisation with NADPH diaphorase but not with soluble guanylate cyclase, and novel paraneural functions for nitrinergic signal transduction. J Histochem Cytochem 40:1439–1456

    PubMed  CAS  Google Scholar 

  • Schmidt HHHW, Warner TD, Ishii K, Sheng H, Murad F (1992b) Insulin secretion from pancreatic β cells caused by L-arginine-derived nitrogen oxides. Science 255: 721–723

    PubMed  CAS  Google Scholar 

  • Schmidt HHHW, Hofmann H, Schindler U, Shutenko ZS, Cunningham DD, Feelisch M (1996) No NO from NO synthase. Proc Natl Acad Sci USA 93:14492–14497

    PubMed  CAS  Google Scholar 

  • Schmidt MJ, Sawyer BD, Truex LL, Marshall WS, Fleisch JH (1985) LY 83583: An agent that lowers intracellular levels of cyclic guanosine 3′,5′-monophosphate. J Pharmacol Exp Ther 232:764–769

    PubMed  CAS  Google Scholar 

  • Scott TRD, Bennett MR (1993) The effect of nitric oxide on the efficacy of synaptic transmission through the chick ciliary ganglion. Br J Pharmacol 110:627–632

    PubMed  CAS  Google Scholar 

  • Sekizawa K, Fukushima T, Ikarashi Y, Maruyama Y, Sasaki H (1993) The role of nitric oxide in cholinergic neurotransmission in rat trachea. Br J Pharmacol 110:816–820

    PubMed  CAS  Google Scholar 

  • Seiemidis S, Cocks TM (1997) Evidence that both nitric oxide (NO) and a non-NO hyperpolarising factor elicit NANC nerve-mediated relaxation in the rat isolated anococcygeus. Br J Pharmacol 120:662–666

    Google Scholar 

  • Sheng H, Schmidt HHHW, Nakane M, et al. (1992) Characterisation and localisation of nitric oxide synthase in non-adrenergic non-cholinergic nerves from bovine retractor penis muscles. Br J Pharmacol 106:768–773

    PubMed  CAS  Google Scholar 

  • Sheng H, Gagne GD, Matsumoto T, Miller MF, Förstermann U, Murad F (1993) Nitric oxide synthase in bovine superior cervical ganglion. J Neurochem 61:1120–1126

    PubMed  CAS  Google Scholar 

  • Shuttleworth CWR, Conlon SB, Sanders KM (1997) Regulation of citrulline recycling in nitric oxide-dependent neurotransmission in the murine colon. Br J Pharmacol 120:707–713

    PubMed  CAS  Google Scholar 

  • Simonsen U, Prieto D, Hernandez M, de Tejada IS, Garcia-Sacristan A (1997) Prejunctional α2-adrenoceptors inhibit nitrergic neurotransmission in horse penile resistance arteries. J Urol 157:2356–2360

    PubMed  CAS  Google Scholar 

  • Som S, Raha C, Chatterjee IB (1983) Ascorbic acid: a scavenger of Superoxide radical. Acta Vitaminol Enzymol 5:243–250

    PubMed  CAS  Google Scholar 

  • Southam E, Charles SL, Garthwaite J (1996) The nitric oxide cyclic GMP pathway and synaptic plasticity in the rat superior cervical ganglion. Br J Pharmacol 119: 527–532

    PubMed  CAS  Google Scholar 

  • Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902

    PubMed  CAS  Google Scholar 

  • Stark ME, Szurszewski JH (1992) Role of nitric oxide in gastrointestinal and hepatic function and disease. Gastroenterology 103:1928–1948

    PubMed  CAS  Google Scholar 

  • Stark ME, Bauer AJ, Szurszewski JH (1991) Effect of nitric oxide on circular muscle of the canine small intestine. J Physiol 444:743–761

    PubMed  CAS  Google Scholar 

  • Steinberg C, Aiska K, Gross SS, Griffith OW, Levi P (1990) Vasopressor effects of N G-substituted arginine analogs in the anaesthetised guinea-pig. Eur J Pharmacol 183: 165

    Google Scholar 

  • Stief CG, Uckert S, Becker AJ, Truss MC, Jonas U (1998) The effects of specific phosphodiesterase (PDE) inhibitors on human and rabbit cavernous tissue in vitro and in vivo. J Urol 159:1390–1399

    PubMed  CAS  Google Scholar 

  • Suzuki N, Mizuno K, Gomi Y (1994) Role of nitric oxide in the peristalsis of isolated guinea-pig ileum. Eur J Pharmacol 251:221–227

    PubMed  CAS  Google Scholar 

  • Tanaka K, Hassall CJS, Burnstock G (1993) Distribution of intracardiac neurons and nerve terminals that contain a marker for nitric oxide, NADPH-diaphorase, in the guinea-pig heart. Cell Tiss Res 273:293–300

    CAS  Google Scholar 

  • Teixeira CE, Bento AC, Lopes-Martins RAB, et al. (1998) Effects of Tityus serrulatus scorpion venom on the rabbit isolated corpus cavernosum and the involvement of NANC nitrergic nerve fibres. Br J Pharmacol 123:435–442

    PubMed  CAS  Google Scholar 

  • Thomas RM, Fang S, Leichus LS, et al. (1996) Antioxidant enzymes in intramural nerves of the opossum esophagus. Am J Physiol 270:G136–G142

    PubMed  CAS  Google Scholar 

  • Toda N (1975) Nicotine-induced relaxation in isolated canine cerebral arteries. J Pharmacol Exp Ther 193:376–384

    PubMed  CAS  Google Scholar 

  • Toda N (1981) Non-adrenergic, non-cholinergic innervation in monkey and human cerebral arteries. Br J Pharmacol 72:281–283

    PubMed  CAS  Google Scholar 

  • Toda N (1995) Nitric oxide and the regulation of cerebral arterial tone. In: Vincent S (ed) Nitric oxide in the nervous system. Academic, London, pp 207–225

    Google Scholar 

  • Toda N, Kimura T, Yoshida K, et al. (1994) Human uterine arterial relaxation induced by nitroxidergic nerve stimulation. Am J Physiol 266:H1446–H1450

    PubMed  CAS  Google Scholar 

  • Toda N, Kimura T, Okamura T (1995a) Nitroxidergic nerve stimulation relaxes human uterine vein. J Autonomic Nervous System 55:198–292

    Google Scholar 

  • Toda N, Uchiyama M, Okamura T (1995b) Prejunctional modulation of nitroxidergic nerve function in canine cerebral arteries. Brain Res 700:213–218

    PubMed  CAS  Google Scholar 

  • Toda N, Ayajiki K, Okamura T (1997a) Effects of Ca2+/calmodulin-dependent protein kinase II inhibitors on the neurogenic cerebroarterial relaxation. Eur J Pharmacol 340:59–65

    PubMed  CAS  Google Scholar 

  • Toda N, Ayajiki K, Okamura T (1997b) Inhibition of nitroxidergic nerve function by neurogenic acetylcholine in monkey cerebral arteries. J Physiol 498:435–461

    Google Scholar 

  • Toda M, Okamura T, Azuma I, Toda N (1997c) Modulation by neurogenic acetylcholine of nitrodoxidergic nerve function in porcine ciliary arteries. Invest Opthalmol Vis Sci 38:2261–2269

    CAS  Google Scholar 

  • Tracey WR, Nakane M, Pollock JS, Förstermann U (1993) Nitric oxide synthases in neuronal cells, macrophages and endothelium are NADPH diaphorases, but represent only a fraction of total cellular NADPH diaphorase activity. Biochem Biophys Res Commun 195:1035–1040

    PubMed  CAS  Google Scholar 

  • Vials AJ, Crowe R, Burnstock G (1997) A neuromodulatory role for neuronal nitric oxide in the rabbit renal artery. Br J Pharmacol 121:213–220

    PubMed  CAS  Google Scholar 

  • Waldeck K, Ny L, Persson K, Andersson K-E (1998) Mediators and mechanisms of relaxation in rabbit urethral smooth muscle. Br J Pharmacol 123:617–624

    PubMed  CAS  Google Scholar 

  • Ward SM, Dalziel HH, Bradley ME, et al. (1992) Involvement of cyclic GMP in nonadrenergic, non-cholinergic inhibitory neurotransmission in dog proximal colon. Br J Pharmacol 107:1075–1082

    PubMed  CAS  Google Scholar 

  • Ward SM, Dalziel HH, Khoyi MA, Westfall A, Sanders KM, Westfall DP (1996) Hyperpolarisation and inhibition of contraction mediated by nitric oxide released from enteric inhibitory neurons in guinea-pig taenia coli. Br J Pharmacol 118: 49–56

    PubMed  CAS  Google Scholar 

  • Watson MJ, Bywater RAR, Taylor GS, Lang RJ (1996a) Effects of nitric oxide (NO) and NO donors on the membrane conductance of circular smooth muscle cells of the guinea-pig proximal colon. Br J Pharmacol 118:1605–1614

    PubMed  CAS  Google Scholar 

  • Watson MJ, Lang RJ, Bywater RAR, Taylor GS (1996b) Characterisation of the membrane conductance changes underlying the apamin-resistant NANC inhibitory junction potential in the guinea-pig proximal and distal colon. J Autonomic Nervous System 60:31–42

    CAS  Google Scholar 

  • Wayman C, McFadzean I, Gibson A, Tucker JF (1996) Inhibition by sodium nitroprusside of a calcium store depletion-activated non-selective cation current in smooth muscle cells of the mouse anococcygeus. Br J Pharmacol 118:2001–2008

    PubMed  CAS  Google Scholar 

  • Wayman C, Gibson A, McFadzean I (1998) Depletion of either ryanodine-or IP3-sensitive calcium stores activates capacitative calcium entry in mouse anococcygeus. Pfluger’s Archiv Eur J Physiol 435:231–239

    CAS  Google Scholar 

  • Werkström V, Persson K, Ny L, Bridgewater M, Brading AF, Andersson K-E (1995) Factors involved in the relaxation of female pig urethra evoked by electrical field stimulation. Br J Pharmacol 116:1599–1604

    PubMed  Google Scholar 

  • Werkström V, Ny L, Persson K, Andersson K-E (1997) Neurotransmitter release evoked by α-latrotoxin in the smooth muscle of the female pig urethra. Naunyn-Schmiedeberg’s Arch Pharmacol 356:151–158

    Google Scholar 

  • Wesiger RA, Fridovich I (1973) Superoxide dismutase: organelle specificity. J Biol Chem 248:3583–3592

    Google Scholar 

  • White TD: (1991) Role of ATP and adenosine in the autonomic nervous system. In: Bell C (ed) Novel peripheral neurotransmitters. Pergamon, New York, pp9–64

    Google Scholar 

  • Wiklund CU, Olgart C, Wiklund NP, Gustafsson LE (1993) Modulation of cholinergic and substance P-like neurotransmission by nitric oxide in the guinea-pig ileum. Br J Pharmacol 110:833–839

    PubMed  CAS  Google Scholar 

  • Wiklund NP, Cellek S, Leone AM, et al. (1997) Visualisation of nitric oxide released by nerve stimulation. J Neuroscience Res 47:224–232

    CAS  Google Scholar 

  • Wolin MS, Cherry PD, Rodenburg JM, Messina EJ, Kaley G (1990) Methylene blue inhibits vasodilatation of skeletal muscle arterioles to acetylcholine and nitric oxide via the extracellular generation of Superoxide anions. J Pharmacol Exp Ther 254:872–876

    PubMed  CAS  Google Scholar 

  • Wood J, Garthwaite J (1994) Models of the diffusional spread of nitric oxide (NO): implications for neural NO signalling and its pharmacological properties. Neuropharmacology 33:1235–1244

    PubMed  CAS  Google Scholar 

  • Xu WM, Gorman P, Sheer D, et al. (1993) Regional localization of the gene coding for human brain nitric oxide synthase (NOS1) to 12q24.2-24.31 by fluorescent in situ hybridisation. Cytogenet Cell Genet 64:62–63

    PubMed  CAS  Google Scholar 

  • Yui Y, Ohkawa S, Ohnishi K, et al. (1989) Mechanism for the generation of an active smooth muscle inhibitory factor (IF) from bovine retractor penis muscle (BRP). Biochem Biophys Res Commun 164:544–594

    PubMed  CAS  Google Scholar 

  • Yunker AMR, Galligan JJ (1996) Endogenous NO inhibits NANC but not cholinergic neurotransmission to circular muscle of guinea-pig ileum. Am J Physiol 34:904–912

    Google Scholar 

  • Zagorodnyuk V, Maggi CA (1994) Electrophysiological evidence for different release mechanisms of ATP and NO as inhibitory NANC transmitters in guinea-pig colon. Br J Pharmacol 112:1077–1082

    PubMed  CAS  Google Scholar 

  • Zamora R, Grzesiok A, Weber H, Feelisch M (1995) Oxidative release of nitric oxide accounts for guanylyl cyclase stimulating, vasodilator and antiplatelet activity of Piloty’s acid — a comparison with Angeli’s salt. Biochem J 312:333–339

    PubMed  CAS  Google Scholar 

  • Zygmunt PM, Zygmunt PKE, Högestatt ED, Andersson K-E (1993) Effects of wconotoxin on adrenergic, cholinergic and NANC neurotransmission in the rabbit urethra and detrusor. Br J Pharmacol 110:1285–1290

    PubMed  CAS  Google Scholar 

  • Zygmunt PKE, Zygmunt PM, Högestätt ED, Andersson K-E (1995) NANC neurotransmission in lamina propria of the rabbit urethra: regulation by different subsets of calcium channels. Br J Pharmacol 115:1020–1026

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martin, W. (2000). The Role of Nitric Oxide in the Peripheral Nervous System. In: Mayer, B. (eds) Nitric Oxide. Handbook of Experimental Pharmacology, vol 143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57077-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57077-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63026-2

  • Online ISBN: 978-3-642-57077-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics