Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 245/1))

Abstract

Activation of the B cell by stimulation through its antigen receptor, along with cooperation from a cognate T cell, forms the basis of the T-cell-dependent humoral immune response. The amount of information that can be transmitted to the B cell by this simple interaction with membrane immunoglobulin (mIg) is, however, limited. Optimally, B-cell responses should be maximised if the B cell is in an appropriate microenvironment, if the antigen is likely to be dangerous to the host, and if an adequate immune response to the antigen has not already been made. There is increasing evidence that activation through the B-cell receptor (BCR) can be modulated by a number of co-receptors, providing the B cell with information of this kind. Two of these co-receptors, CD22 and CD19, will be discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahearn JM, Fischer MB, Croix D, Goerg S, Ma M, Xia J, Zhou X, Howard RG, Rothstein TL, Carroll MC (1996) Disruption of the Cr2 locus results in a reduction in B-la cells and in an impaired B cell response to T-dependent antigen. Immunity 4:251–262

    PubMed  CAS  Google Scholar 

  • Bléry M, Kubagawa H, Chen CC, Vély F, Cooper MD, Vivier E (1998) The paired Ig-like receptor PIR-B is an inhibitory receptor that recruits the protein-tyrosine phosphatase SHP-1. Proc Natl Acad Sci USA 95:2446–2451

    PubMed  Google Scholar 

  • Bradbury LE, Kansas GS, Levy S, Evans S, Tedder TF (1992) The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 molecules. J Immunol 149:2841–2850

    PubMed  CAS  Google Scholar 

  • Bradbury LE, Goldmacher VS, Tedder TF (1993) The CD19 signal transduction complex of B lymphocytes. Deletion of the CD19 cytoplasmic domain alters signal transduction but not complex formation with TAPA-1 and Leu 13. J Immunol 151:2915–2927

    PubMed  CAS  Google Scholar 

  • Braesch-Andersen S, Stamenkovic I (1994) Sialylation of the B lymphocyte molecule CD22 by alpha2, 6-sialyltransferase is implicated in the regulation of CD22-mediated adhesion. J Biol Chem 269:11783–11786

    PubMed  CAS  Google Scholar 

  • Budman DR, Merchant EB, Steinberg AD, Doft B, Gershwin ME, Lizzio E, Reeves JP (1977) Increased spontaneous activity of antibody-forming cells in the peripheral blood of patients with active SLE. Arthritis Rheum 20:829–833

    PubMed  CAS  Google Scholar 

  • Burshtyn DN, Yang W, Yi Taolin, Long EO (1997) A novel phosphotyrosine motif with a critical amino acid at position 2 for the SH2 domain mediated activation of the tyrosine phosphatase SHP-1. J Biol Chem 272:13066–13072

    PubMed  CAS  Google Scholar 

  • Campana D, Janossy G, Bofill M, Trejdosiewicz LK, Hoffbrand MD, Mason AV, Lebacq AM, Forster HK (1985) Human B cell development. I. Phenotypic differences of B lymphocytes in the bone marrow and peripheral lymphoid tissue. J Immunol 134:1524–1530

    PubMed  CAS  Google Scholar 

  • Campbell M, Klinman NR (1995) Phosphotyrosine-dependent association between CD22 and protein tyrosine phosphatase 1C. Eur J Immunol 25:1573–1579

    PubMed  CAS  Google Scholar 

  • Carter RH, Tuveson DA, Park DJ, Rhee SG, Fearon DT (1991) The CD19 complex of B lymphocytes. Activation of phospholipase C by a protein tyrosine kinase-dependent pathway that can be enhanced by the membrane IgM complex. J Immunol 147:3663–3671

    PubMed  CAS  Google Scholar 

  • Carter RH and Fearon DT (1992) CD19: lowering the threshold for antigen receptor stimulation by B lymphocytes. Science 256:105–107

    PubMed  CAS  Google Scholar 

  • Casillas A, Hanekom C, Williams K, Katz R, Nel AE (1991) Stimulation of B-cells via the membrane immunoglobulin receptor or with phorbol myristate 13-acetate induces tyrosine phosphorylation and activation of a 42-kDa microtubule-associated protein-2 kinasc. J Biol Chem 266:19088–19094

    PubMed  CAS  Google Scholar 

  • Chalupny NJ, Aruffo A, Esselstyn JM, Chan P-Y, Bajorath J, Blake J, Gilliland LK, Ledbetter JA, Tepper MA (1995) Specific binding of Fyn and phosphatidylinositol 3-kinase to the B cell surface glycoprotein CD19 through their src homology domains. Eur J Immunol 25:2978–2984

    PubMed  CAS  Google Scholar 

  • Chan VWF, Meng F, Soriano, P, DeFranco AL, Lowell CA (1997) Characterization of the B lymphocyte populations in lyn-deficient mice and the role of lyn in signal initiation and down-regulation. Immunity 7:69–81

    PubMed  CAS  Google Scholar 

  • Chan VWF, Lowell CA, DeFranco AL (1998) Defective negative regulation of antigen receptor signaling in lyn-deficient B lymphocytes. Current Biology 8:545–553

    PubMed  CAS  Google Scholar 

  • Cornall RJ, Cyster JG, Hibbs ML, Dunn AR, Otipoby KL, Clark EA, Goodnow CC (1998) Polygenic autoimmune traits: lyn, CD22 and SHP-1 are limiting elements of a biochemical pathway regulating BCR signaling and selection. Immunity 8:497–508

    PubMed  CAS  Google Scholar 

  • Croix DA, Ahearn JM, Rosengard AM, Han S, Kelsoe G, Ma M, Carroll MC (1996) Antibody response to a T-dependent antigen requires B cell expression of complement receptors. J Exp Med 183:1857–1864

    PubMed  CAS  Google Scholar 

  • Cyster JG and Goodnow CC (1995) Protein tyrosine phosphatase 1C negatively regulates antigen receptor signaling in B lymphocytes and determines thresholds for negative selection. Immunity 2:13–24

    PubMed  CAS  Google Scholar 

  • Cyster JG and Goodw CC 1997 Tuning antigen receptor signaling by CD22 integrating cues froantigens and the microenvironment. Immunity 6:509–517

    PubMed  CAS  Google Scholar 

  • Delibrias CC, Floettmann JE, Rowe M, Fearon DT (1997) Downregulated expression of SHP-1 in Burkitt lymphomas and germinal center B lymphocytes. J Exp Med 186:1575–1583

    PubMed  CAS  Google Scholar 

  • Dempsey PW, Allison MED, Akkaraju S, Goodnow CC, Fearon DT (1996) C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271:348–350

    PubMed  CAS  Google Scholar 

  • Doody GM, Justement LB, Delibrias CC, Matthews RJ, Lin J, Thomas ML, Fearon DT (1995) A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 269:242–244

    PubMed  CAS  Google Scholar 

  • Dörken B, Moldenhauer G, Pezzutto A, Schwartz R, Feller A, Kiesel S, Nadler LM (1986) HD39 (B3), a B lineage-restricted antigen whose cell surface expression is limited to resting and activated human B lymphocytes. J Immunol 136:24470–24479

    Google Scholar 

  • Engel P, Wagner N, Miller A, Tedder TF (1995a) Identification of the ligand binding domains of CD22, a member of the immunoglobulin superfamily that uniquely binds a sialic acid-dependent ligand. J Exp Med 181:21581–21586

    Google Scholar 

  • Engel P, Zhou L-J, Ord D C, Sato S, Kioller B, Tedder TF (1995) Abnormal B lymphocyte development, activation and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity 3:39–50

    PubMed  CAS  Google Scholar 

  • Erickson LD, Tygrett LT, Bhatia SK, Grabstein KH, Waldschmidt TJ (1996) Differential expression of CD22 (Lyb8) on murine B cells. International Immunology 8:1121–1129

    PubMed  CAS  Google Scholar 

  • Evans SS, Lee DB, Han T, Tomasi TB, Evans RL (1990) Monoclonal antibody to the interferon-inducible protein Leu-13 triggers aggregation and inhibits proliferation of leukemic B cells. Blood 76:2583–2593

    PubMed  CAS  Google Scholar 

  • Fauci AS, Montsopoulos HM (1980) Polyclonally triggered B cells in the peripheral blood and bone marrow of normal individuals and in patients with SLE and Sjögren’s syndrome. Arthritis Rheum 24:577–584

    Google Scholar 

  • Fehr T, Rickert RC, Odermatt B, Roes J, Rajewsky K, Hengartner H, Zinkernagel RM (1998) Antiviral protection and germinal center formation, but impaired B cell memory in the absence of CD19. J Exp Med 188:145–155

    PubMed  CAS  Google Scholar 

  • Fischer MB, Minghe M, Goerg S, Zhou X, Xia J, Finco O, Han S, Kelsoe G, Howard RG, Rothstein TL, Kremmer E, Rosen FS, Carroll MC (1996) Regulation of the B cell response to T-dependent antigens by classical pathway complement. J Immunol 157:549–556

    PubMed  CAS  Google Scholar 

  • Fischer MB, Goerg S, Shen L, Prodeus AP, Goodnow CC, Kelsoe G, Carroll MC (1998) Dependence of germinal center B cells on expression of CD21/CD35 for survival. Science 280:582–585

    PubMed  CAS  Google Scholar 

  • Gold MR, Sanghera JS, Stewart J, Pelech SJ (1992) Selective activation of p42 mitogen-activated protein (MAP) kinase in murine B lymphoma cell lines by membrane immunoglobulin cross-linking. Biochem J 287:269–276

    PubMed  CAS  Google Scholar 

  • Gray D, Skarvall H (1988) B cell memory is short-lived in the absence of antigen. Nature 336:70–73

    PubMed  CAS  Google Scholar 

  • Hanasaki K, Varki A, Stamenkovic I, Bevilacqua MP (1994) Cytokine-induced β-galactoside α-2,6-sialyltransferase in human endothelial cells mediates α2,6-sialylation of adhesion molecules and CD22 ligands. J Biol Chem 269:10637–10643

    PubMed  CAS  Google Scholar 

  • Hennet T, Chui D, Paulson JC, Marth JD (1998) Immune regulation by the ST6Gal sialyltransferase. Proc Natl Acad Sci U S A 95:4504–4509

    PubMed  CAS  Google Scholar 

  • Hibbs ML, Tarlinton DM, Armes J, Grail D, Hodgson G, Maglitto R, Stacker SA, Dunn AR (1995) Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell 83:301–311

    PubMed  CAS  Google Scholar 

  • Hippen KL, Buhl AM, D’Ambrosio D, Nakamura K, Persin C, Cambier JC (1997) FcyRIIB1 inhibition of BCR-mediated phosphoinositide hydrolysis and Ca2+ mobilization is integrated by CD19 dephosphorylation. Immunity 7:49–58

    PubMed  CAS  Google Scholar 

  • Jacob J, Kassir R, Kelsoe G (1991) In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl) acetyl. I. The architecture and dynamics of responding cell populations. J Exp Med 173:1165–1175

    PubMed  CAS  Google Scholar 

  • Kozlowski M, Mlinaric-Rascan I, Feng GS, Shen R, Pawson T, Siminovitch KA (1993) Expression and catalytic activity of the tyrosine phosphatase PTP1 C is severely impaired in motheaten and viable motheaten mice. J Exp Med 178:2157–2163

    PubMed  CAS  Google Scholar 

  • Krop I, de Fougerolles AR, Hardy RR, Allison M, Schlissel MS, Fearon DT (1996) Self-renewal of B1 lymphocytes is dependent on CD19. Eur J Immunol 26:238–242

    PubMed  CAS  Google Scholar 

  • Kubagawa H, Burrows PD, Cooper MD (1997) A novel pair of immunoglobulin-like receptors expressed by B cells and myeloid cells. Proc Natl Acad Sci USA 94:5261–5266

    PubMed  CAS  Google Scholar 

  • Law CL, Torres RM, Sundberg HA, Parkhouse RME, Brannan CI, Copeland NG, Jenkins NA, Clark EA (1993) Organization of the murine CD22 locus. J Immunol 151:175–187

    PubMed  CAS  Google Scholar 

  • Law CL, Aruffo A, Chandran KA, Doty RT, Clark EA (1995) Ig domains 1 and 2 of murine CD22 constitute the ligand-binding domain and bind multiple sialylated ligands expressed on B and T cells. J Immunol 155:3368–3376

    PubMed  CAS  Google Scholar 

  • Law CL, Sidorenko SP, Chandran KA, Zhao Z, Shen SH, Fischer EH, Clark EA (1996) CD22 associates with protein tyrosine phosphatase 1C, Syk, and phospholipase Cγl upon B cell activation. J Exp Med 183:547–560

    PubMed  CAS  Google Scholar 

  • Leprince C, Draves KE, Geahlen RL, Ledbetter JA, Clark EA (1993) CD22 associates with the human surface IgM-B-cell antigen receptor complex. Proc Natl Acad Sci USA 90:3236–3240

    PubMed  CAS  Google Scholar 

  • Levy A, Todd SC, Maecker HT (1998) CD81 (TAPA-1): A molecule involved in signal transduction and cell adhesion in the immune system. Ann Rev Immunol 89–109

    Google Scholar 

  • Li X, Sandoval D, Freeberg L, Carter RH (1997) Role of CD19 tyrosine 391 in synergistic activation of B lymphocytes by coligation of CD19 and membrane Ig. J Immunol 158:5649–5657

    PubMed  CAS  Google Scholar 

  • Li Y-Y, Baccam M, Waters SB, Pessin JE, Bishop GA, Koretzky GA (1996) CD40 ligation results in protein kinase C-independent activation of ERK and JNK in resting murine splenic B cells. J Immunol 157:1440–1447

    PubMed  CAS  Google Scholar 

  • Ling NR, MacLennan ICM, Mason DY (1987) B-cell and plasma antigens: new and previously defined clusters. In Leukocyte Typing III. White Cell Differentiation Antigens, ed. AJ McMichael, pp. 302–305. Oxford Univ. Pr

    Google Scholar 

  • Liossis SN, Kovacs B, Dinnis G, Kammer GM, Tsokos GC (1996) B cells from patients with systemic lupus erythematosus display abnormal antigen receptor-mediated signal transduction events. J Clin Invest 98:2549–2557

    PubMed  CAS  Google Scholar 

  • Maecker HT, Levy S (1997) Normal lymphocyte development but delayed humoral immune response in CD81-null mice. J Exp Med 185:1505–1510

    PubMed  CAS  Google Scholar 

  • Maloney MD, Lingwood CA (1994) CD19 has a potential CD77 (globotriaosyl ceramide)-binding site with sequence similarity to verotoxin B-subunits: implications of molecular mimicry for B cell adhesion and enterohemorrhagic Escherichia coli pathogenesis. J Exp Med 180:191–201

    PubMed  CAS  Google Scholar 

  • Matsumoto AK, Kopicky-Burd J, Carter RH, Tuveson DA, Tedder TF, Fearon DT (1991) Intersection of the complement and immune systems: a signal transduction complex of the B lymphocyte-containing complement receptor type 2 and CD19. J Exp Med 173:55–64

    PubMed  CAS  Google Scholar 

  • Matsumoto AK, Martin DR, Carter RH, Klickstein LB, Ahearn JM, Fearon DT (1993) Functional dissection of the CD21/CD19/TAPA-1/Leu-13 complex of B lymphocytes. J Exp Med 178:1407–1417

    PubMed  CAS  Google Scholar 

  • Miyazaki T, Müller R, Campbell KS (1997) Normal development but differentially altered proliferative responses of lymphocytes in mice lacking CD81. EMBO 16:4217–4225

    CAS  Google Scholar 

  • Mohan C, Morel L, Yang P, Wakeland EK (1997) Genetic dissection of systemic lupus erythematosus pathogenesis: Sle2 on murine chromosome 4 leads to B cell hyperactivity. J Immunol 159:454–465

    PubMed  CAS  Google Scholar 

  • Molina H, Holers VM, Li B, Fang Y-F, Mariathasan S, Goellner J, Strauss-Schoenberger J, Karr RW, Chaplin DD (1996) Markedly impaired humoral immune response in mice deficient in complement receptors 1 and 2. Proc Natl Acad Sci USA 93:3357–3361

    PubMed  CAS  Google Scholar 

  • Morel L, Rudofsky UH, Longmate JA, Schiffenbauer J, Wakeland EK (1994) Polygenic control of susceptibility to murine systemic lupus erythematosus. Immunity 1:219–229

    PubMed  CAS  Google Scholar 

  • Murakami M, Honjo T (1995) Involvement of B-1 cells in mucosal immunity and autoimmunity. Immunol Today 16:534–539

    PubMed  CAS  Google Scholar 

  • Nishizumi H, Taniuchi I, Yamanashi Y, Kitamura D, Hie D, Mori S, Watanabe T, Yamamoto T (1995) Impaired proliferation of peripheral B cells and indication of autoimmune disease in lyn-deficient mice. Immunity 3:549–560

    PubMed  CAS  Google Scholar 

  • Nitschke L, Carsetti R, Ocker B, Kohler G, Lamers MC (1997) CD22 is a negative regulator of B cell receptor signaling. Curr Biol 7:133–143

    PubMed  CAS  Google Scholar 

  • O’Keefe TL, Williams GT, Davies SL, Neuberger MS (1996) Hyperresponsive B cells in CD22-deficient mice. Science 274:798–801

    CAS  Google Scholar 

  • Ono M, Okada H, Bolland S, Yanagi S, Kurosaki T, Ravetch JV (1997) Deletion of SHIP or SHP-1 reveals two distinct pathways for inhibitory signaling. Cell 90:293–301

    PubMed  CAS  Google Scholar 

  • O’Rourke LM, Tooze R, Turner M, Sandoval DM, Carter RH, Tybulewicz VLJ, Fearon DT (1998) CD19 as a membrane-anchored adaptor protein of B lymphocytes: costimulation of lipid and protein kinases by recruitment of Vav. Immunity 8:365–645

    Google Scholar 

  • Otipoby KL, Andersson KB, Draves KE, Klaus SJ, Farr AG, Kerner JD, Perlmutter RM, Law CL, Clark EA (1996) CD22 regulates thymus-independent responses and the lifespan of B cells. Nature 384:634–637

    PubMed  CAS  Google Scholar 

  • Pani G, Kozlowski M, Gambier JC, Mills GB, Siminovitch KA (1995) Identification of the tyrosine phosphatase PTP1C as a B cell antigen receptor-associated protein involved in the regulation of B cell signaling. J Exp Med 181:2077–2084

    PubMed  CAS  Google Scholar 

  • Peaker CJG, Neuberger MS (1993) Association of CD22 with the B cell antigen receptor. Eur J Immunol 23:1358–1363

    PubMed  CAS  Google Scholar 

  • Pepys MB (1974) Role of complement in induction of antibody production in vivo. Effect of cobra factor and other C3-reactive agents on thymus dependent and thymus-independent antibody responses. J Exp Med 140:126–145

    PubMed  CAS  Google Scholar 

  • Pezzutto A, Dörken B, Moldenhauer G, Clark EA (1987) Amplification of human B cell activation by a monoclonal antibody to the B cell-specific antigen CD22, Bp 130/140. J Immunol 138:98–103

    PubMed  CAS  Google Scholar 

  • Pezzutto A, Rabinovitch PS, Dörken B, Modenhauer G, Clark EA (1988) Role of the CD22 human B cell antigen in B cell triggering by anti-immunoglobulin. J Immunol 140:1791–1795

    PubMed  CAS  Google Scholar 

  • Razi N, Varki A (1998) Masking and unmasking of the sialic acid-binding lectin activity of CD2 (Siglec-2) on B lymphocytes. Proc Natl Acad Sci USA 95:7469–7474

    PubMed  CAS  Google Scholar 

  • Rickert RC, Rajewsky K, Roes J (1995) Impairment of T-cell-dependent B-cell responses and B-l cell development in CD19 deficient mice. Nature 376:352–355

    PubMed  CAS  Google Scholar 

  • Rudofsky UK, Evans BD, Balaban SL, Mottironi VD, Gabrielsen AE (1993) Differences in expression of lupus nephritis in New Zealand Mixed H-22 homozygous inbred strains of mice derived from New Zealand Black and New Zealand White mice: origins and initial characterization. Lab Invest 68: 419–426

    PubMed  CAS  Google Scholar 

  • Sato S, Miller AS, Inaoki M, Bock CB, Jansen PJ, Tang MLK, Tedder TF (1996a) CD22 is both a positive and negative regulator of B lymphocyte antigen receptor signal transduction: altered signaling in CD22-deficient mice. Immunity 5:551–562

    PubMed  CAS  Google Scholar 

  • Sato S, Ono N, Steeber DA, Pisetsky DS, Tedder TF (1996b) CD19 regulates B lymphocyte signaling thresholds for the development of B-1 lineage cells. J Immunol 156:4371–4378

    Google Scholar 

  • Sato S, Miller AS, Howard MC, Tedder TF (1997a) Regulation of B lymphocyte development and activation by the CD19/CD21/CD81/Leu 13 complex requires the cytoplasmic domain of CD19. J Immunol 159:3278–3287

    PubMed  CAS  Google Scholar 

  • Sato S, Jansen PJ, Tedder TF (1997b) CD19 and CD22 expression reciprocally regulates tyrosine phosphorylation of Vav protein during B lymphocyte signaling. Proc Natl Acad Sci USA 94:13158–13162

    PubMed  CAS  Google Scholar 

  • Scharenberg AM, Kinet JP (1996) The emerging field of receptor-mediated inhibitory signaling: SHP or SHIP? Cell 87:961–964

    PubMed  CAS  Google Scholar 

  • Schittek B, Rajewsky K (1990) Maintenance of B cell memory by long-lived cells generated from proliferating precursors. Nature 346:749–751

    PubMed  CAS  Google Scholar 

  • Schulte RJ, Campbell M-A, Fischer WH, Sefton BM (1992) Tyrosine phosphorylation of CD22 during B cell activation. Science 258:1001–1004

    PubMed  CAS  Google Scholar 

  • Schulz LD, Schweitzwer PA, Rajan TV, Yi T, Ihle JN, Mathews RJ, Thomas ML, Beier DR (1993) Mutations at the murine motheaten locus are within the hemopoietic cell protein tyrosine phospha-tase (Heph) gene. Cell 73:1445–1454

    Google Scholar 

  • Sgroi D, Koretzky GA, Stamenkovic I (1995) Regulation of CD45 engagement by the B-cell receptor CD22. Proc Natl Acad Sci USA 92:4026–4030

    PubMed  CAS  Google Scholar 

  • Smith KGC, Hewitson TD, Nossal GJV, Tarlinton DM (1996) The phenotype and fate of the antibody-forming cells of the splenic foci. Eur J Immunol 26:444–448

    PubMed  CAS  Google Scholar 

  • Smith KGC, Tarlinton DM, Doody GM, Hibbs ML, Fearon DT (1998) Inhibition of the B cell by CD22: A requirement for Lyn. J Exp Med 187:807–811

    PubMed  CAS  Google Scholar 

  • Stamenkovic I, Seed B (1990) The B cell antigen CD22 mediates monocyte and erythrocyte adhesion. Nature 344:74–77

    Google Scholar 

  • Stephens L, Jackson TR, Hawkins PT (1993) Activation of phosphatidylinositol 4,5-bisphosphate supply agonists and non-hydrolysable GTP analogues. Biochem J 296:481–488

    PubMed  CAS  Google Scholar 

  • Stoddart A, Ray RJ, Paige CJ (1997) Analysis of murine CD22 during B cell development: CD22 is expressed on B cell progenitors prior to IgM. Int Immunol 9:1571–1579

    PubMed  CAS  Google Scholar 

  • Sutherland CL, Heath AW, Pelech SL, Young PR, Gold MR (1996) Differential activation of the ERK, JNK, and p38 mitogen-activated protein kinases by CD40 and the B cell antigen receptor. J Immunol 157:3381–3390

    PubMed  CAS  Google Scholar 

  • Symington FW, Subbarao B, Mosier DE, Sprent J (1992) Lyb-8.2: a new B cell antigen defined and characterized with a monoclonal antibody. Immunogenetics 16:381–391

    Google Scholar 

  • Tedder TF, Zhou L-J, Engel P (1994) The CD19/CD21 signal transduction complex of B lymphocytes. Immunol Today 15:437–442

    PubMed  CAS  Google Scholar 

  • Tedder TF, Tuscano J, Sato S, Kehrl JH (1997a) CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Annu Rev Immunol 15:481–504

    PubMed  CAS  Google Scholar 

  • Tedder TF, Inaoki M, Sato S (1997b) The CD19-CD21 complex of B lymphocytes regulates signal transduction thresholds governing humoral immunity and autoimmunity. Immunity 6:107–118

    PubMed  CAS  Google Scholar 

  • Tooze RM, Doody GM, Fearon DT (1997b) Counterregulation by the coreceptors CD19 and CD22 of MAP kinase activation by membrane immunoglobulin. Immunity 7:59–67

    PubMed  CAS  Google Scholar 

  • Torres RM, Law CL, Santos-Argumedo L, Kirkham PA, Grabstein K, Parkhouse RM, Clark EA (1992) Identification and characterization of the murine homologue of CD22, a B lymphocyte-restricted adhesion molecule. J Immunol 149:2641–2649

    PubMed  CAS  Google Scholar 

  • Tsitsikov EN, Gutierrez-Ramos JC, Geha RS (1997) Impaired CD19 expression and signaling, enhanced antibody response to type II T independent antigen and reduction of B-l cells in CD81-deficient mice. Proc Natl Acad Sci USA 94:10844–10849

    PubMed  CAS  Google Scholar 

  • Tsui HW, Siminovitch KA, de Souza L, Tsui FWL (1993) Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nature Genetics 4:124–129

    PubMed  CAS  Google Scholar 

  • Tuscano JM, Engel P, Tedder TF, Kehrl JH (1996a) Engagement of the adhesion receptor CD22 triggers a potent stimulatory signal for B cells and blocking CD22/CD22L interactions impairs T-cell proliferation. Blood 87:4723–4730

    PubMed  CAS  Google Scholar 

  • Tuscano JM, Engel P, Tedder TF, Agarwal A, Kehrl JH (1996b) Involvement of p72syk kinase, p53/ 561yn kinase and phosphatidyl inositol-3 kinase in signal transduction via the human B lymphocyte antigen CD22. Eur J Immunol 26:1246–1252

    PubMed  CAS  Google Scholar 

  • Tuveson DA, Carter RH, Soltoff SP, Fearon DT (1993) CD19 of B cells as a surrogate kinase insert region to bind phosphatidylinositol 3-kinase. Science 260:986–989

    PubMed  CAS  Google Scholar 

  • van Noesel CJM, Lankester AC, van Schijndel GMW, van Lier RAW (1993) The CR2/CD19 complex on human B cells contains the src-family kinase Lyn. Int Immunol 5:699–705

    PubMed  Google Scholar 

  • Wang J, Koizumi T, Watanabe T (1996) Altered antigen receptor signaling and impaired Fas-mediated apoptosis of B cells in Lyn-deficient mice. J Exp Med 184:831–838

    PubMed  CAS  Google Scholar 

  • Weng WK, Jarvis L, LeBien TW (1994) Signaling through CD19 activates Vav/mitogen-activated protein kinase pathway and induces formation of a CD19/Vav/phosphatidylinositol 3-kinase complex in human B cell precursors. J Biol Chem 269:32514–32521

    PubMed  CAS  Google Scholar 

  • Williams GT, Peaker CJ, Patel KJ, Neuberger MS (1994) The α/β sheath and its cytoplasmic tyrosines are required for signaling by the B-cell antigen receptor but not for capping or for serine/threonine-kinase recruitment. Proc Natl Acad Sci USA 91:474–478

    PubMed  CAS  Google Scholar 

  • Wilson GL, Najfeld V, Kozlow E, Menniger J, Ward D, Kehrl JH (1993) Genomic structure and chromosomal mapping of the human CD22 gene. J Immunol 150:5013–5024

    PubMed  CAS  Google Scholar 

  • Yamanashi Y, Terutaka K, Mizuguchi J, Yamamoto T, Toyoshima K (1991) Association of B cell antigen receptor with protein tyrosine kinase Lyn. Science 251:192–194

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smith, K.G.C., Fearon, D.T. (2000). Receptor Modulators of B-Cell Receptor Signalling — CD19/CD22. In: Justement, L.B., Siminovitch, K.A. (eds) Signal Transduction and the Coordination of B Lymphocyte Development and Function I. Current Topics in Microbiology and Immunology, vol 245/1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57066-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57066-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63017-0

  • Online ISBN: 978-3-642-57066-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics