Skip to main content

Direct Calculation of Reaction Rates

  • Conference paper
Reaction and Molecular Dynamics

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 75))

Abstract

Rate constants of chemical reactions can be calculated directly from dynamical simulations. Employing flux correlation functions, no scattering calculations are required. These calculations provide a rigorous quantum description of the reaction process based on first principles. Thus, quantum effects, e.g. tunneling and zero point energy, are correctly included. In addition, flux correlation functions are the conceptual basis of important approximate theories. Changing from quantum to classical mechanics and employing a short time approximation, one can derive transition state theory and variational transition state theory. This article reviews the theory of flux correlation functions and their relation to transition state theory, describes computational schemes to obtain accurate rate constants, presents applications, and discusses approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Yamamoto, J. Chem. Phys. 33, 281 (1960).

    Article  CAS  Google Scholar 

  2. W. H. Miller, J. Chem. Phys. 61, 1823 (1974).

    Article  CAS  Google Scholar 

  3. W. H. Miller, S. D. Schwartz, and J. W. Tromp, J. Chem. Phys. 79, 4889 (1983).

    Article  CAS  Google Scholar 

  4. F. Matzkies and U. Manthe, J. Chem. Phys. 110, 88 (1999).

    Article  CAS  Google Scholar 

  5. D. G. Truhlar, B. C. Garret, and S. J. Klippenstein, J. Phys. Chem. 100, 12771 (1996).

    Article  CAS  Google Scholar 

  6. E. Pollak and J.-L. Liao, J. Chem. Phys. 108, 2733 (1998).

    Article  CAS  Google Scholar 

  7. U. Manthe and W. H. Miller, J. Chem. Phys. 99, 3411 (1993).

    Article  CAS  Google Scholar 

  8. U. Manthe,J. Chem. Phys. 102, 9205 (1995).

    Article  CAS  Google Scholar 

  9. W. H. Thompson and W. H. Miller, J. Chem. Phys. 102, 7409 (1995).

    Article  CAS  Google Scholar 

  10. U. Manthe and F. Matzkies, Chem. Phys. Lett. 252, 7 (1996).

    Article  Google Scholar 

  11. D. H. Zhang and J. C. Light, J. Chem. Phys. 104, 6184 (1996).

    Article  CAS  Google Scholar 

  12. S. M. Miller and T. Carrington, Chem. Phys. Lett. 267, 417 (1997).

    Article  CAS  Google Scholar 

  13. F. Matzkies and U. Manthe, J. Chem. Phys. 106, 2646 (1997).

    Article  CAS  Google Scholar 

  14. W. H. Thompson and W. H. Miller, J. Chem. Phys. 106, 142 (1997).

    Article  CAS  Google Scholar 

  15. F. Matzkies and U. Manthe, J. Chem. Phys. 108, 4828 (1998).

    Article  CAS  Google Scholar 

  16. U. Manthe and F. Matzkies, Chem. Phys. Lett. 282, 442 (1998).

    Article  CAS  Google Scholar 

  17. U. Manthe, T. Seideman, and W. H. Miller, J. Chem. Phys. 99, 10078 (1993).

    Article  CAS  Google Scholar 

  18. J. M. Bowman, J. Chem. Phys. 95, 4960 (1991).

    Article  CAS  Google Scholar 

  19. H.-D. Meyer, U. Manthe, and L. S. Cederbaum, Chem. Phys. Lett. 165, 73 (1990).

    Article  CAS  Google Scholar 

  20. U. Manthe, H.-D. Meyer, and L. S. Cederbaum, J. Chem. Phys. 97, 3199 (1992).

    Article  CAS  Google Scholar 

  21. U. Manthe, J. Chem. Phys. 105, 6989 (1996).

    Article  CAS  Google Scholar 

  22. F. Matzkies and U. Manthe, J. Chem. Phys. 112, 130 (2000).

    Article  CAS  Google Scholar 

  23. D. C. Clary, J. Chem. Phys. 95, 7298 (1991).

    Article  CAS  Google Scholar 

  24. D. Wang and J. M. Bowman, J. Chem. Phys. 96, 8906 (1992).

    Article  Google Scholar 

  25. D. H. Zhang and J. Z. H. Zhang, J. Chem. Phys. 99, 5616 (1993).

    Google Scholar 

  26. D. Neuhauser, J. Chem. Phys. 100, 9272 (1994).

    Article  CAS  Google Scholar 

  27. D. H. Zhang and J. Z. H. Zhang, J. Chem. Phys. 101, 1146 (1994).

    Article  CAS  Google Scholar 

  28. U. Manthe, T. Seideman, and W. H. Miller, J. Chem. Phys. 101, 4759 (1994).

    Article  CAS  Google Scholar 

  29. D. H. Zhang and J. C. Light, J. Chem. Phys. 105, 1291 (1996).

    Article  CAS  Google Scholar 

  30. W. Zhu, J. Dai, J. Z. H. Zhang, and D. H. Zhang, J. Chem. Phys. 105, 4881 (1996).

    Article  CAS  Google Scholar 

  31. G. C. Schatz and H. Elgersma, Chem. Phys. Lett. 21, 73 (1980).

    Google Scholar 

  32. S. P. Walch and T. H. Dunning, J. Chem. Phys. 72, 1303 (1980).

    Article  CAS  Google Scholar 

  33. A. D. Isaacson and D. G. Truhlar, J. Chem. Phys. 76, 1380 (1982).

    Article  CAS  Google Scholar 

  34. A. R. Ravishankara, J. M. Nicovich, R. L. Thompson, and F. P. Tully, J. Phys. Chem. 85, 2498 (1981).

    Article  CAS  Google Scholar 

  35. Q. Sun and J. M. Bowman, J. Chem. Phys. 92, 5201 (1990).

    Article  CAS  Google Scholar 

  36. M. A. ter Horst, G. C. Schatz, and L. B. Harding, J. Chem. Phys. 105, 558 (1996).

    Article  Google Scholar 

  37. T. Takayanagi, M. A. ter Horst, and G. C. Schatz,J. Chem. Phys. 105, 2309 (1996).

    Article  CAS  Google Scholar 

  38. T. Takayanagi and G. C. Schatz, J. Chem. Phys. 106, 3227 (1997).

    Article  CAS  Google Scholar 

  39. Q. Sun et al., J. Chem. Phys. 93, 4730 (1990).

    Article  CAS  Google Scholar 

  40. . I.R. Sims and I. W. M. Smith, Chem. Phys. Lett. 149, 565 (1988).

    Article  CAS  Google Scholar 

  41. B. Atakan et al., Chem. Phys. Lett. 154, 449 (1989).

    Article  Google Scholar 

  42. H. Koizumi, G. C. Schatz, and M. S. Gordon, J. Chem. Phys. 95, 6421 (1991).

    Article  CAS  Google Scholar 

  43. K. Mahmud, J.-S. Kim, and A. Fontijn, J. Phys. Chem. 94, 2994 (1990).

    Article  CAS  Google Scholar 

  44. R. D. H. Brown and I. W. M. Smith, Int. J. Chem. Kinet. 7, 301 (1975).

    Article  CAS  Google Scholar 

  45. R. D. H. Brown and I. W. M. Smith, Int. J. Chem. Kinet. 10, 1 (1978).

    Article  CAS  Google Scholar 

  46. U. Manthe, W. Bian, and W. Werner, Chem. Phys. Lett. 313, 647 (1999).

    Article  CAS  Google Scholar 

  47. A. A. Westenberg and N. de Haas, J. Chem. Phys. 48, 4405 (1968).

    Article  CAS  Google Scholar 

  48. J. A. Lee, J. V. Michael, W. A. Payne, and L. J. Stief, J. Chem. Soc. Faraday Trans. 1 73, 1530 (1977).

    Google Scholar 

  49. J. C. Miller and R. J. Gordon, J. Chem. Phys. 75, 5305 (1981).

    Article  CAS  Google Scholar 

  50. D. Kita and D. H. Stedman, J. Chem. Soc. Faraday Trans. 2 78, 1249 (1982).

    Google Scholar 

  51. S. S. Kumaran, K. P. Lim, and J. V. Michael, J. Chem. Phys. 101, 9487 (1994).

    Article  CAS  Google Scholar 

  52. W. Bian and H.-J. Werner, to be published (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Manthe, U. (2000). Direct Calculation of Reaction Rates. In: Laganà, A., Riganelli, A. (eds) Reaction and Molecular Dynamics. Lecture Notes in Chemistry, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57051-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57051-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41202-1

  • Online ISBN: 978-3-642-57051-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics