Skip to main content

Approximate Time Independent Methods for Polyatomic Reactions

  • Conference paper
Reaction and Molecular Dynamics

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 75))

Abstract

In this chapter I review approximation methods to describe the quantum reactive scattering of polyatomic molecules. These methods are known generically as “reduced dimensionality” approximations. I will review several versions of this method, and focus on the so-called J-shifting approximation and very recent developments of it. These new developments are reviewed for the OH + H2reaction, where apparent discrepancies between coupled-states and standard J-shifting rate constants are resolved. I also present new expressions in the spirit of J-shifting for reactions that proceed via complex formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Special Issue on Chemical Reaction Theory,Phys. Chem. Chem. Phys.1, 929–1397 (1999).

    Google Scholar 

  2. D. C. Clary,Science279, 1879 (1998)

    Google Scholar 

  3. W H. Miller, J. Phys. Chem.102, 793 (1998)

    Article  CAS  Google Scholar 

  4. G. C. Schatz, J. Phys. Chem.100, 12839 (1996)

    Article  CAS  Google Scholar 

  5. J. M. Bowman and G. C. Schatz, Ann. Rev. Phys. Chem. 46, 169 (1995)

    Article  CAS  Google Scholar 

  6. Advances in Molecular Vibrations and Collision Dynamics, vols. 2A and 2B, ed. J. M. Bowman (JAI, Greenwich, CT, 1994).

    Google Scholar 

  7. D. C. Clary, J. Phys. Chem. 98, 10678 (1994)

    Article  CAS  Google Scholar 

  8. J. M. Bowman, J. Phys. Chem. 95, 4960 (1991).

    Article  CAS  Google Scholar 

  9. J. M. Bowman, Adv. Chem. Phys. 61, 115 (1986).

    Google Scholar 

  10. J. M. Bowman and A. F. Wagner, in The Theory of Chemical Reaction Dynamics, ed. D.C. Clary (Reidel, Dordrecht, 1986), pp. 47–76.

    Book  Google Scholar 

  11. R. B. Walker and E. F. Hayes, in The Theory of Chemical Reaction Dynamics, ed. D.C. Clary (Reidel, Dordrecht, 1986), pp. 105–133.

    Book  Google Scholar 

  12. M. Baer and D. J. Kouri, in The Theory of Chemical Reaction Dynamics, ed. D.C. Clary (Reidel, Dordrecht, 1986), pp. 167–192.

    Book  Google Scholar 

  13. Q. Sun, J. M. Bowman, G. C. Schatz, J. R. Sharp, and J. N. L. Connor, J. Chem. Phys. 92, 1677 (1990).

    Article  CAS  Google Scholar 

  14. D. G. Truhlar, B. C. Garrett, and S. J. Klippenstein J. Phys. Chem. 100, 12771 (1996).

    Article  CAS  Google Scholar 

  15. J. M. Bowman and D. Wang, in ref. 6, vol. 2B, pp. 187–223.

    Google Scholar 

  16. Q. Sun and J. M. Bowman, Int. J. Quant. Chem. Symp. 23, 115 (1989).

    CAS  Google Scholar 

  17. D. C. Clary, in ref. 1, p. 1173.

    Google Scholar 

  18. J. M. Bowman, Chem. Phys. Lett. 217, 36 (1994);

    Article  CAS  Google Scholar 

  19. D. Wang and J. M. Bowman,J. Phys. Chem. 98, 7994 (1994);

    Article  CAS  Google Scholar 

  20. J. M. Bowman J. Phys. Chem. 102, 3006 (1998).

    Article  CAS  Google Scholar 

  21. D. De Fazio and J. F. Castillo,in ref. 1, p. 1165.

    Google Scholar 

  22. C. W. McCurdy and W. H. Miller, in State-to-State Chemistry, eds. P. R. Brooks and E. F. Hayes, (American Chemical Society: Washington, D.C., 1977), p. 239.

    Book  Google Scholar 

  23. C. L. Russell and D. E. Manolopoulos J. Chem. Phys. 110, 177 (1999).

    Article  CAS  Google Scholar 

  24. D. H. Zhang, J. C. Light, and S-Y. Lee J. Chem. Phys. 109, 79 (1998).

    Article  CAS  Google Scholar 

  25. R. T Pack, J. Chem. Phys. 60, 633 (1974).

    Article  CAS  Google Scholar 

  26. P. McGuire and D. J. Kouri, J. Chem. Phys. 60, 2488 (1974).

    Article  CAS  Google Scholar 

  27. M. C. Colton and G. C. Schatz, Int. J. Quantum Chem. 18, 961 (1986).

    CAS  Google Scholar 

  28. J. M. Bowman and H. Shnider, J. Chem. Phys. 110, 4428 (1999).

    Article  CAS  Google Scholar 

  29. Carter, S.; Bowman, J. M.; Harding, L. B. Spectrochimica Acta, Part A. 1997 53, 1179;

    Google Scholar 

  30. Carter, S.; Culik, S.; Bowman, J. M. J. Chem. Phys. 1997 107, 10458;

    Article  CAS  Google Scholar 

  31. Carter, S.; Bowman, J. M. J. Chem. Phys. 1998 108, 4397;

    Article  CAS  Google Scholar 

  32. Carter, S.; Bowman, J. M.; Handy, N. C. Theo. Chem. Accnts. 1998 100, 191;

    CAS  Google Scholar 

  33. Bowman, J. M.; Christoffel, K. M.; Weinberg, G. Theochem. 1999, 461–46271;

    Google Scholar 

  34. code documentation, etc. can be found at the URL HYPERLINK http://www.emory.edu/CHEMISTRY/faculty/bowman/multimode/index.html

  35. D. H. Zhang and S. Y. Lee, J. Chem. Phys. 110, 4435 (1999).

    Article  CAS  Google Scholar 

  36. S. P. Walch and T. H. Dunning, Jr., J. Chem. Phys. 72, 1303 (1980)

    Article  CAS  Google Scholar 

  37. G. C. Schatz and H. Elgersma, Chem. Phys. Lett. 73, 21 (1980).

    Article  CAS  Google Scholar 

  38. A. D. Isaacson, J. Chem. Phys. 107, 3832 (1997).

    Article  CAS  Google Scholar 

  39. S. K. Pogrebnya, D. C. Clary amd J. Palma, to be published.

    Google Scholar 

  40. G. Ochoa de Aspru and D. C. Clary J. Phys. Chem. A. 102, 963 (1998)

    Google Scholar 

  41. W. H. Miller, J. Chem. Phys. 65, 2216 (1976).

    Article  CAS  Google Scholar 

  42. S. K. Gray, E. M. Goldfield, G. C. Schatz, and G. G. Balint-Kurti in ref. 1, p. 1141.

    Google Scholar 

  43. T. Seideman, J. Chem. Phys. 101, 3662 (1994).

    Article  CAS  Google Scholar 

  44. Q. Cui, K. Morokuma, J. M. Bowman, and S. J. Klippenstein, J. Chem. Phys. 110, 9469 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bowman, J.M. (2000). Approximate Time Independent Methods for Polyatomic Reactions. In: Laganà, A., Riganelli, A. (eds) Reaction and Molecular Dynamics. Lecture Notes in Chemistry, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57051-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57051-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41202-1

  • Online ISBN: 978-3-642-57051-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics