Skip to main content

Fitting Potential Energy Surfaces

  • Conference paper

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 75))

Abstract

This paper reviews several methods for determining analytical representations of potential energy surfaces for small molecule systems which are involved in unimolecular dissociation and/or bimolecular reaction. These methods may be categorized as “global” or “local” and they may involve either “fitting” or “interpolation” of ab initio data. The methods may be applied either directly to the full potential energy surface, or to individual terms in a many-body expansion of the full potential surface. In addition, most of the methods may be applied to the description of multiple coupled potential energy surfaces (typically using a diabatic representation) as well as to Born-Oppenheimer surfaces. Included in the global methods are least squares fitting and spline, Morse-spline, rotated Morse-spline, and reproducing kernel Hilbert space interpolation methods. The local methods include Shepard and moving least squares interpolation. Examples of the application of these methods to several triatomic reactive surfaces are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. N. Murrell, S. Carter, S. C. Farantos, P. Huxley, and A. Varandas, Molecular Potential Energy Functions (Wiley, Chichester, 1984)

    Google Scholar 

  2. G. C. Schatz, Rev. Mod. Phys. 61, 669 (1989)

    Article  CAS  Google Scholar 

  3. A. J. C. Varandas, Adv. Chem. Phys. 74, 255 (1988)

    Article  CAS  Google Scholar 

  4. A. J. C. Varandas, J. Molec. Str. (Theochem) 166, 59 (1988)

    Article  Google Scholar 

  5. D. G. Truhlar, R. Steckler, and M. S. Gordon, Chem. Rev. 87, 217 (1987)

    Article  CAS  Google Scholar 

  6. A. Laganà, G. O. de Aspuru, and E. Garcia, J. Chem. Phys. 108, 3886 (1998)

    Article  Google Scholar 

  7. G. O. de Aspuru and D. C. Clary, J. Phys. Chem. A 102, 9631 (1998)

    Article  Google Scholar 

  8. F. O. Ellison, J. Am. Chem. Soc. 85, 3540 (1963)

    Article  CAS  Google Scholar 

  9. P. J. Kuntz, Ber. Bunsenges. Phys. Chem. 86, 367 (1982)

    Article  CAS  Google Scholar 

  10. K. A. Nguyen, I. Rossi, and D. G. Truhlar, J. Chem. Phys. 103, 5522 (1995)

    Article  Google Scholar 

  11. K. C. Thompson, M. J. T. Jordan, and M. A. Collins, J. Chem. Phys. 108, 564 (1998)

    Article  CAS  Google Scholar 

  12. K. C. Thompson, M. J. T. Jordan, and M. A. Collins, J. Chem. Phys. 108, 8302 (1998)

    Article  CAS  Google Scholar 

  13. J. Ischtwan and M. A. Collins, J. Chem. Phys. 100, 8080 (1994)

    Article  CAS  Google Scholar 

  14. M. J. T. Jordan, K. C. Thompson, and M. A. Collins, J. Chem. Phys. 102, 5647 (1995)

    Article  CAS  Google Scholar 

  15. M. J. T. Jordan, K. C. Thompson, and M. A. Collins, J. Chem. Phys. 103, 9669 (1995)

    Article  CAS  Google Scholar 

  16. M. J. T. Jordan and M. A. Collins, J. Chem. Phys. 104, 4600 (1996)

    Article  CAS  Google Scholar 

  17. K. C. Thompson and M. A. Collins, J. Chem. Soc. Faraday Trans. 93, 871 (1997)

    Article  CAS  Google Scholar 

  18. R. P. A. Bettens and M. A. Collins, J. Chem. Phys. 108, 2424 (1998)

    Article  CAS  Google Scholar 

  19. R. P. A. Bettens and M. A. Collins, J. Chem. Phys. 109, 9728 (1998)

    Article  CAS  Google Scholar 

  20. Y. M. Rhee, T. G. Lee, S. C. Park, and M. S. Kim, J. Chem. Phys. 106, 1003 (1997)

    Article  CAS  Google Scholar 

  21. T. Ishida and G. C. Schatz, J. Chem. Phys. 107, 3558 (1997)

    Article  CAS  Google Scholar 

  22. T. Takata, T. Taketsugu, and K. Hirao, J. Chem. Phys. 109, 4281 (1998)

    Article  CAS  Google Scholar 

  23. T. Ishida and G. C. Schatz, Chem. Phys.Lett. 298, 285 (1998)

    Article  CAS  Google Scholar 

  24. K. S. Sorbie and J. N. Murrell, Mol. Phys. 31, 905 (1976)

    Article  CAS  Google Scholar 

  25. R. Schinke and W. A. Lester Jr., J. Chem. Phys. 72, 3754 (1980)

    Article  CAS  Google Scholar 

  26. J. N. Murrell and S. Carter, J. Phys. Chem. 88, 4887 (1984)

    Article  CAS  Google Scholar 

  27. M. S. Fitzcharles and G. C. Schatz, J. Phys. Chem. 90, 3634 (1986)

    Article  CAS  Google Scholar 

  28. T.-S. Ho and H. Rabitz, J. Chem. Phys. 104, 2584 (1996)

    Article  CAS  Google Scholar 

  29. N. Sathyamurthy and L. M. Raff, J. Chem. Phys. 63, 464 (1975)

    Article  CAS  Google Scholar 

  30. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge, Cambridge, UK, 1989)

    Google Scholar 

  31. D. R. McLauglin and D. L. Thompson, Chem. Phys. 59, 4393 (1973)

    Google Scholar 

  32. J. M. Bowman, J. S. Bittman, and L. B. Harding, J. Chem. Phys. 85, 911 (1986)

    Article  CAS  Google Scholar 

  33. G. K. Chawla, G. C. McBane, P. L. Houston, and G. C. Schatz, J. Chem. Phys. 88, 5481 (1988)

    Article  CAS  Google Scholar 

  34. H. Koizumi, G. C. Schatz, and S. P. Walch, J. Chem. Phys. 95, 4130 (1992)

    Article  Google Scholar 

  35. J. S. Wright and S. K. Gray, J. Chem. Phys. 69, 67 (1978)

    Article  CAS  Google Scholar 

  36. J. M. Bowman and A. Kuppermann, Chem. Phys. Lett. 34, 523 (1975)

    Article  CAS  Google Scholar 

  37. B. C. Garrett, D. G. Truhlar, A. F. Wagner, and T. H. Dunning Jr, J. Chem. Phys. 78, 4400 (1983)

    Article  CAS  Google Scholar 

  38. C. S. Maierle, G. C. Schatz, M. S. Gordon, P. McCabe, and J. N. L. Connor, J. Chem. Soc. Faraday Trans. 93, 709 (1997)

    Article  CAS  Google Scholar 

  39. A. J. Dobbyn, J. N. L. Connor, N. A. Besley, P. J. Knowles, and G. C. Schatz, Phys. Chem. Chem. Phys. 1, 957 (1999)

    Article  CAS  Google Scholar 

  40. M. L. Dubernet and J. M. Hutson, J. Phys. Chem. 98, 5844 (1994)

    Article  CAS  Google Scholar 

  41. T. S. Ho, T. Hollebeek, H. Rabitz, L. B. Harding, and G. C. Schatz, J. Chem. Phys. 105, 10472 (1996)

    Article  CAS  Google Scholar 

  42. G. C. Schatz, A. Papaioannou, L. A. Pederson, L. B. Harding, T. Hollebeek, T. S. Ho, and H. Rabitz, J. Chem. Phys. 107, 2340 (1997)

    Article  CAS  Google Scholar 

  43. P. Lancaster and K. Salkauskas, Curve and Surface Fitting, An Introduction (Academic, London, 1986).

    Google Scholar 

  44. T. Ishida and G. C. Schatz, Chem. Phys. Lett. 314, 369 (1999) (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schatz, G.C. (2000). Fitting Potential Energy Surfaces. In: Laganà, A., Riganelli, A. (eds) Reaction and Molecular Dynamics. Lecture Notes in Chemistry, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57051-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57051-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41202-1

  • Online ISBN: 978-3-642-57051-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics