Skip to main content

Normalized Difference Vegetation Index Estimation in Grasslands of Patagonia by ANN Analysis of Satellite and Climatic Data

  • Chapter
Artificial Neuronal Networks

Part of the book series: Environmental Science ((ENVSCIENCE))

  • 269 Accesses

Abstract

The Normalized Difference Vegetation Index (NDVI), derived from the red and infrared bands of the AVHRR on-board sensor of NOAA satellites, shows a high correlation with biophysical rates of the target area, such as transpiration or primary productivity (Sellers et al. 1992). NDVI has been shown to be a linear estimator of the fraction of the photosynthetic active radiation (PAR) absorbed by the canopy (Potter et al. 1993; Ruimy et al. 1994). Monteith (1981) showed that the amount of PAR absorbed throughout the growing season is the major control of net primary production. NDVI data also allows the tracking of intra-annual changes in carbon gains (Lloyd 1990; Paruelo and Lauenroth 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguiar MR, Paruelo JM, Sala OE, Lauenroth WK (1996) Ecosystem consequences of plant functional types changes in a semiarid grassland. Journal of Vegetation Science 7:599–608

    Article  Google Scholar 

  • Box EO, Holben BN, Kalb V (1989) Accuracy of the AVHRR Vegetation Index as a predictor of biomass, primary productivity and net C02 flux. Vegetation 80:71–89

    Article  Google Scholar 

  • Burke IC,Kittel TGF, Lauenroth WK, Snook P, Yonker CM, Parton WJ (1991) Regional analysis of the central great plains.Bioscience 41:685–692

    Article  Google Scholar 

  • Derr VE, Slutz RJ (1994) Prediction of El Niño events in the Pacific by means of neuronal networks. AI Applications 8:51–63

    Google Scholar 

  • Diambra L, Plastino A (1995) Maximum entropy, pseudoinverse techniques, and time series predictions with layered networks. Physical Review E 52(4):4557–4560

    Article  CAS  Google Scholar 

  • Diambra L, Fernandez J, Plastino A (1995) Pseudoinverse techniques, information theory, and the training of feeforward networks. Physical Review E 52(3):2887–2892

    Article  CAS  Google Scholar 

  • Elizondo D, Hoogenboom G, McClendon RW (1994) Development of a neuronal network model to predict daily solar radiation. Agricultural and Forest Meteorology 71:115–132

    Article  Google Scholar 

  • Farmer JD, Sidorowich JJ (1987) Predicting chaotic time series. Physical Review Letters 59:845–848.

    Article  Google Scholar 

  • Foody GM, McCulloch MB, Yates WB (1995) Classification of remotely sensed data by an artificial neuronal network: issues related to training data characteristics. Photogrammetric Engineering and Remote Sensing 61:391–401

    Google Scholar 

  • Gimblett RH, Ball GL (1995) Neuronal Network architectures for monitoring and simulating changes in forest resource management. AI Applications 9:103–123

    Google Scholar 

  • Holben B (1986) Characteristics of maximum value composite images from temporal AVHRR data. Int J Rem Sen 7:1417–1434

    Article  Google Scholar 

  • James ME, Kalluri SNV (1994) The pathfinder AVHRR land data set: an improved coarse resolution data set for terrestrial monitoring. Int J Rem Sen 15:3347–3363

    Article  Google Scholar 

  • Jobbágy EG, Paruelo JM, Leon RJC (1995) Estimacion de la precipitacion y de su variabilidad interanual a partir de informacion geografica en el NW de Patagonia, Argentina. Ecología Austral 5:47–53

    Google Scholar 

  • Jobbágy EG, Sala OE, Paruelo JM (1999) Patterns and controls of primary production in the Patagonian steppe: A remote sensing approach. Ecology (in press)

    Google Scholar 

  • Kanellopoulos I, Varfis A, Wilkinson GG, Megier J (1992) Land-cover discrimination in SPOT HRV imagery using an artificial neuronal network-a 20-class experiment. Int J Rem Sen 13:917–924

    Article  Google Scholar 

  • Lauenroth WK, Hunt HW, Swift DM, Singh JS (1986) Estimating aboveground net primary productivity in grasslands: A simulation approach. Ecol Model 33:297–314

    Article  Google Scholar 

  • Lek S, Delacoste M, Baran P, Dimopoulos I, Lauga J, Aulagnier S (1996) Application of neuronal networks to modeling nonlinear relationships in ecology. Ecol Model 90(1):39–52

    Article  Google Scholar 

  • León RJC, Aguiar MR (1985) El deterioro por uso pasturil en estepas herbaceas patagonicas. Phytocoenologia 13:181–196

    Google Scholar 

  • León RJC, Bran D, Collantes M, Paruelo JM, Soriano A (1998) Grandes unidades de vegetatión de la Patagonia. Ecología Austral 8:125–144

    Google Scholar 

  • Liu ZK, Xiao JY (1991) Classification of remotely sensed image data using artificial neuronal networks. Int J Rem Sen 12:2433–2438

    Article  Google Scholar 

  • Lloyd D (1990) A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. Int J Rem Sen 11:2269–2279

    Article  Google Scholar 

  • McCann DW (1992) A neuronal network short-term forecast of significant thunderstorms. Weather and Forecasting 7:525–534

    Article  Google Scholar 

  • McNaughton SJ, Oesterheld M, Frank DA, Williams KJ (1989) Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341:142–144

    Article  CAS  Google Scholar 

  • McNaughton SJ, Sala OE, Oesterheld M (1993) Comparative ecology of African and South American arid to subhumid ecosystems. In: Goldblatt P (ed) Biological relationships between Africa and South America. Yale University Press, New Haven, pp 548–567

    Google Scholar 

  • Monteith JL (1981) Climatic variation and the growth of crops. Quarterly Journal of the Royal Meteorological Society 107:749–774

    Article  Google Scholar 

  • Oesterheld M, Sala OE, McNaughton SJ (1992) Effect of animal husbandry on herbivore-carrying capacity at a regional scale. Nature 356:234–236

    Article  CAS  Google Scholar 

  • Oesterheld M, DiBella CM, Kerdiles H (1998) Relation between NOAA-AVHRR satellite data and stocking rate in grasslands. Ecological Applications 8:207–212

    Article  Google Scholar 

  • Paruelo JM, Lauenroth WK (1995) Regional patterns of NDVI in North American shrublands and grasslands. Ecology 76:1888–1898

    Article  Google Scholar 

  • Paruelo JM, Sala OE (1995) Water losses in the Patagonian Steppe: A modeling approach. Ecology 76:510–520

    Article  Google Scholar 

  • Paruelo JM, Tomasel F (1997) Prediction of functional characteristics of ecosystems: A comparison of artificial neuronal networks and regression models. Ecol Model 98:173–186

    Article  Google Scholar 

  • Paruelo JM, Aguiar MR, Leon RJC, Golluscio RA, Batista WB (1991) The use of satellite imagery in quantitative phytogeography: A case study of Patagonia (Argentina). In: Crovello TJ, Nimis PL (eds) Quantitative approaches to phytogeography. Kluwer Academic Publishers, The Hague,pp 183–204

    Chapter  Google Scholar 

  • Paruelo JM, Epstein HE, Lauenroth WK, Burke IC (1997) ANPP estimates from NDVI for the central grassland region of the US. Ecology 78(3):953–958

    Article  Google Scholar 

  • Paruelo JM, Beltrán AB, Jobbagy EG, Sala OE, Golluscio RA (1998) The climate of patagonia: General patterns and controls on biotic processes. Ecología Austral 8:89–101

    Google Scholar 

  • Perelman SB, León RJC, Bussacca JP (1997) Floristic changes related to grazing intensity in a Patagonian shrub steppe. Ecography 20:400–406

    Article  Google Scholar 

  • Potter CS, Randerson JT, Field CB, Matson PA, VitousekPM, Mooney HA, Klooster SA (1993) Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles 7:811–841

    Article  Google Scholar 

  • Prince SD (1991a) Satellite remote sensing of primary production: comparison of results for Sahelian grasslands 1981–1988. Int J RemSen 12:1301–1311

    Article  Google Scholar 

  • Prince SD (1991b) A model of regional primary production for use with coarse resolution satellite data. Int J Rem Sen 12:1313–1330

    Article  Google Scholar 

  • Prohaska F (1976) The climate of Argentina, Paraguay and Uruguay. In: Schwerdtfeger E (ed) Climate of Central and South America. Elsevier, Amsterdam, pp 57–69

    Google Scholar 

  • Recknagel F, French M, Harkonen P, Yabunaka K (1997) Artificial neuronal network approach for modeling and prediction of algal blooms. Ecol Model 96(1–3):11–28

    Article  CAS  Google Scholar 

  • Ruimy A, Saugier B, Dedieu G (1994) Methodology for the estimation of terrestrial net primary production from remotely sensed data. J Geophy Res 99:5263–5283

    Article  Google Scholar 

  • Sala OE, Biondini ME, Lauenroth WK (1988) Bias in estimates of primary pruduction: An analytical solution. Ecol Model 44:43–55

    Article  Google Scholar 

  • Sala OE, Lauenroth WK, Golluscio RA (1997) Plant functional types in temperate arid regions. In: Smith TM, Shugart HH, Woodward FI (eds) Plant functional types. Cambridge University Press, Cambridge, pp 217–233

    Google Scholar 

  • Sellers PJ, Berry JA, Collatz GJ, Field CB, Hall FG (1992) Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens Environ 42:187–216

    Article  Google Scholar 

  • Soriano A (1983) Deserts and semi-deserts of Patagonia. In: West NE (ed) Ecosystems of the world: Temperate deserts and semi-deserts. Elsevier, Amsterdam, pp 423–460

    Google Scholar 

  • Soriano A, Movia CP (1987) Erosión y desertización en Patagonia. Interciencia 11:77–83

    Google Scholar 

  • Soriano A, Paruelo JM (1990) El manejo de campos de pastoreo en Patagonia: Aplicación de principios ecológicos. Ciencia Hoy 2:44–53

    Google Scholar 

  • Tucker CJ, Newcomb WW (1994) AVHRR data sets for determination of desert spatial extent. Int J Rem Sen 15:3547–3565

    Article  Google Scholar 

  • Tucker CJ, Vanpraet CL, Sharman MJ, van Ittersum G (1985) Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980–1984. Remote Sens Environ 17:233–249

    Article  Google Scholar 

  • Turchin P, Taylor AD (1992) Complex dynamics in ecological time series. Ecology 73(1):289–305

    Article  Google Scholar 

  • Wan EA (1994) Time series prediction by using a connectionist network with internal delay lines. In: Weigend AS, Gershenfeld NA (eds) Time series prediction: Forecasting the future and understanding the past. Addison-Wesley Pub. Co., Reading

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tomasel, F.G., Paruelo, J.M. (2000). Normalized Difference Vegetation Index Estimation in Grasslands of Patagonia by ANN Analysis of Satellite and Climatic Data. In: Lek, S., Guégan, JF. (eds) Artificial Neuronal Networks. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57030-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57030-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63116-0

  • Online ISBN: 978-3-642-57030-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics