Advertisement

Comparison of hypoplastic and elastoplastic modelling of undrained triaxial tests on loose sand

  • I. Herle
  • T. Doanh
  • W. Wu

Abstract

The capabilities of two different constitutive relations for the modelling of undrained triaxial tests on water-saturated loose sand are compared. The hypoplastic model represents a relatively simple model based on rational mechanics whereas the chosen elastoplastic model by Di Prisco belongs to the non-associative plasticity with combined hardening. Both models perform qualitatively well in spite of some discrepancies in comparison with experiments. A modification of the hypoplastic model is tested showing both an improvement as well as additional malfunctions in the model behaviour.

Keywords

Axial Strain Stress Path Loose Sand Instability Surface Elastoplastic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bauer E., Zum mechanischen Verhalten granulärer Stoffe unter vorwiegend ödometrischer Beanspruchung. Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, 1992. Heft 130.Google Scholar
  2. 2.
    Bauer E., An objective description of critical states in hypoplasticity. In A. Asaoka, T. Adachi, and F. Oka, editors, IS-Nagoya’97: Deformation and Progressive Failure in Geomechanics, pages 347–352. Pergamon, 1997.Google Scholar
  3. 3.
    Di Prisco C., Nova R., and Lanier J., A mixed isotropic-kinematic hardening constitutive law for sand. In D. Kolymbas, editor, Modern Approaches to Plasticity, pages 83–124. Elsevier, 1993.Google Scholar
  4. 4.
    Di Prisco C, Matiotti R., and Nova R., Theorical investigation of the undrained stability of shallow submerged slopes. Géotechnique, 45(3):479–496, 1995.CrossRefGoogle Scholar
  5. 5.
    Doanh T., Ibraim E., and Matiotti R., Undrained instability of very loose Hostun sand in triaxial compression and extension. Part 1: experimental observations. Mechanics of Cohesive-Frictional Materials, 2(1):47–70, 1997.CrossRefGoogle Scholar
  6. 6.
    Doanh T., Ibraim E., Dubujet Ph., and Matiotti R., Static liquefaction: Performances and limitations of two advanced elastoplasticity models. In NUMOG VI, pages 57–62, Canada, 1997. A.A.Balkema.Google Scholar
  7. 7.
    Doanh T., Ibraim E., Effects of recent stress history on the static liquefaction of very loose Hostun RF sand. In 11th Euro Conf. on Earthquake Engineering, 8 pages, Paris, 1998. A.A.Balkema.Google Scholar
  8. 8.
    Doanh T., Ibraim E., Dubujet Ph., Matiotti R. and Herle I., Effects of recent stress history on the static liquefaction of loose Hostun RF sand. In Int. Workshop on the Physics and Mechanics of Soil Liquefaction, pages 7–28, Baltimore, 1998. Ed. Lade and Yamamuro, Balkema.Google Scholar
  9. 9.
    Dubujet Ph., Doanh T., Undrained instability of very loose Hostun sand in triaxial compression and extension. Part 2: Theoretical analysis using an elasto-plasticity model. Mechanics of Cohesive-Frictional Materials, 2(1):71–92, 1997.CrossRefGoogle Scholar
  10. 10.
    Gudehus G., A comparison of some constitutive laws for soils under radially symmetric loading and unloading. In 3rd Int. Conf. on Numerical Methods in Geomechanics, pages 1309–1323, Aachen, 1979. A.A.Balkema.Google Scholar
  11. 11.
    Gudehus G., A comprehensive constitutive equation for granular materials. Soils and Foundations, 36(1):1–12, 1996.CrossRefGoogle Scholar
  12. 12.
    Herle I., Hypoplastizität und Granulometrie einfacher Korngerüste. Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, 1997. Heft 142.Google Scholar
  13. 13.
    Herle I. and Doanh T., Verification of a hypoplastic model with static liquefaction tests on Hostun RF sand. In D. Lo Presti, editor, Proc. 4th Int. Symp. on Pre-failure Deformation Characteristics of Geomaterials, Torino, 1999. Balkema.Google Scholar
  14. 14.
    Herle I. and Gudehus G.,. Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mechanics of Cohesive-Frictional Materials, 1999. In print.Google Scholar
  15. 15.
    Hyodo M., Tanimizu H., Noriyuki Y., Murata H., Undrained cyclic and monotonic triaxial behaviour of saturated loose sand. Soils and Foundations, 34(1):19–32, 1994.CrossRefGoogle Scholar
  16. 16.
    Ibraim E. Différents aspects du comportement des sables à partir d’essais triaxiaux: des petites déformations à la liquéfaction statique. PhD thesis, ENTPE — INSA Lyon, 1998.Google Scholar
  17. 17.
    Ibraim E., Doanh T., Minimum undrained strength of anisotropically consolidated loose Hostun RF sand. In A. Asaoka, T. Adachi, and F. Oka, editors, IS-Nagoya’97: Deformation and Progressive Failure in Geomechanics, pages 623–628. Pergamon, 1997.Google Scholar
  18. 18.
    Imposimato S. and Nova R., An investigation on the uniqueness of the incremental response of elastoplastic models for virgin sand. Mechanics of Cohesive-Frictional Materials, 3:65–87, 1998.CrossRefGoogle Scholar
  19. 19.
    Kolymbas D., Generalized hypoelastic constitutive equation. In Saada and Bianchini, editors, Constitutive Equations for Granular Non-Cohesive Soils, pages 349–366. Balkema, 1988.Google Scholar
  20. 20.
    R. S. Ladd R. S., Preparing test specimens using undercompaction. Geotech-nical Testing Journal, 1(1):16–23, 1978.CrossRefGoogle Scholar
  21. 21.
    Lade P. V. and R. B. Nelson R. B., Instability of granular materials with nonassociated flow. Journal of Engrg. Mech. ASCE, 114(12):2173–2191, 1988.CrossRefGoogle Scholar
  22. 22.
    Lade P. V. and R. B. Nelson R. B., Modelling the elastic behaviour of granular materials. International Journal of Numerical and Analytical Methods in Geomechanics, 11:521–542, 1987.CrossRefGoogle Scholar
  23. 23.
    Lanier J., Di Prisco C., and Nova R., Etude expérimentale et analyse théorique de l’anisotropie induite du sable Hostun. Revue Française de Géotechnique, 57:59–74, 1993.Google Scholar
  24. 24.
    Matiotti R., Analisi sperimentale del fenomeno della liquefazione statica delle sabbie sciolte e sue applicazioni numeriche. PhD thesis. Politecnico di Milano. 1996.Google Scholar
  25. 25.
    Niemunis A., Hypoplasticity vs. elastoplasticity, selected topics. In D. Kolymbas, editor, Modern approaches to plasticity, pages 278–307. Elsevier, 1993.Google Scholar
  26. 26.
    Nova R., ’sinfonietta classica‘: An exercise on classical soil modelling. In Saada and Bianchini, editors, Constitutive Equations for Granular Non-Cohesive Soils, pages 501–519. Balkema, 1988.Google Scholar
  27. 27.
    Nübel K., 1999. Personal communication.Google Scholar
  28. 28.
    Nübel K. and Karcher C, FE simulations of granular material with a given frequency distribution of voids as initial condition. Granular Matter, 1:105–112, 1998.CrossRefGoogle Scholar
  29. 29.
    Rivlin R.and Ericksen J., Stress-deformation relations for isotropic materials. J. Rat. Mech. Anal., 4:323–425, 1955.MathSciNetMATHGoogle Scholar
  30. 30.
    von Wolffersdorff P.-A., A hypoplastic relation for granular materials with a predefined limit state surface. Mechanics of Cohesive-Frictional Materials, 1:251–271, 1996.CrossRefGoogle Scholar
  31. 31.
    Wu W., Investigation of rapid cavity expansion. 1998. Oral presentation at Euroconference: Developments and perspectives of hypoplasticity, Innsbruck.Google Scholar
  32. 32.
    Wu W. and Bauer E., A simple hypoplastic constitutive model for sand. International Journal of Numerical and Analytical Methods in Geomechanics, 18:833–862, 1994.MATHCrossRefGoogle Scholar
  33. 33.
    Wu W., Bauer E., and Kolymbas D., Hypoplastic constitutive model with critical state for granular materials. Mechanics of Materials, 23:45–69, 1996.CrossRefGoogle Scholar
  34. 34.
    Wu W. and Niemunis A., Failure criterion, flow rule and dissipation function derived from hypoplasticity. Mechanics of Cohesive-Frictional Materials, 1:145–163, 1996.CrossRefGoogle Scholar
  35. 35.
    Wu W., Simple critical state model for sand. In NUMOG VII, Graz, 1999. A.A.Balkema.Google Scholar
  36. 36.
    Yamamuro J.A. and Lade P. V., Strain localization in extension tests on granular materials. Journal of Engrg. Mech. ASCE, 121(7):828–836, 1995.CrossRefGoogle Scholar
  37. 37.
    Yamamuro J.A. and Lade P. V., Static liquefaction of very loose sands. Canadian Geotechnical Journal, 34(6):905–917, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • I. Herle
    • 1
  • T. Doanh
    • 2
  • W. Wu
    • 3
  1. 1.Institute of Theoretical and Applied MechanicsCzech Academy of SciencesPrague
  2. 2.Ecole Nationale des Travaux Publics de 1’ EtatLGMFrance
  3. 3.Lahmeyer International LtdFrance

Personalised recommendations