Skip to main content

Comparison of hypoplastic and elastoplastic modelling of undrained triaxial tests on loose sand

  • Chapter
Constitutive Modelling of Granular Materials

Abstract

The capabilities of two different constitutive relations for the modelling of undrained triaxial tests on water-saturated loose sand are compared. The hypoplastic model represents a relatively simple model based on rational mechanics whereas the chosen elastoplastic model by Di Prisco belongs to the non-associative plasticity with combined hardening. Both models perform qualitatively well in spite of some discrepancies in comparison with experiments. A modification of the hypoplastic model is tested showing both an improvement as well as additional malfunctions in the model behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer E., Zum mechanischen Verhalten granulärer Stoffe unter vorwiegend ödometrischer Beanspruchung. Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, 1992. Heft 130.

    Google Scholar 

  2. Bauer E., An objective description of critical states in hypoplasticity. In A. Asaoka, T. Adachi, and F. Oka, editors, IS-Nagoya’97: Deformation and Progressive Failure in Geomechanics, pages 347–352. Pergamon, 1997.

    Google Scholar 

  3. Di Prisco C., Nova R., and Lanier J., A mixed isotropic-kinematic hardening constitutive law for sand. In D. Kolymbas, editor, Modern Approaches to Plasticity, pages 83–124. Elsevier, 1993.

    Google Scholar 

  4. Di Prisco C, Matiotti R., and Nova R., Theorical investigation of the undrained stability of shallow submerged slopes. Géotechnique, 45(3):479–496, 1995.

    Article  Google Scholar 

  5. Doanh T., Ibraim E., and Matiotti R., Undrained instability of very loose Hostun sand in triaxial compression and extension. Part 1: experimental observations. Mechanics of Cohesive-Frictional Materials, 2(1):47–70, 1997.

    Article  Google Scholar 

  6. Doanh T., Ibraim E., Dubujet Ph., and Matiotti R., Static liquefaction: Performances and limitations of two advanced elastoplasticity models. In NUMOG VI, pages 57–62, Canada, 1997. A.A.Balkema.

    Google Scholar 

  7. Doanh T., Ibraim E., Effects of recent stress history on the static liquefaction of very loose Hostun RF sand. In 11th Euro Conf. on Earthquake Engineering, 8 pages, Paris, 1998. A.A.Balkema.

    Google Scholar 

  8. Doanh T., Ibraim E., Dubujet Ph., Matiotti R. and Herle I., Effects of recent stress history on the static liquefaction of loose Hostun RF sand. In Int. Workshop on the Physics and Mechanics of Soil Liquefaction, pages 7–28, Baltimore, 1998. Ed. Lade and Yamamuro, Balkema.

    Google Scholar 

  9. Dubujet Ph., Doanh T., Undrained instability of very loose Hostun sand in triaxial compression and extension. Part 2: Theoretical analysis using an elasto-plasticity model. Mechanics of Cohesive-Frictional Materials, 2(1):71–92, 1997.

    Article  Google Scholar 

  10. Gudehus G., A comparison of some constitutive laws for soils under radially symmetric loading and unloading. In 3rd Int. Conf. on Numerical Methods in Geomechanics, pages 1309–1323, Aachen, 1979. A.A.Balkema.

    Google Scholar 

  11. Gudehus G., A comprehensive constitutive equation for granular materials. Soils and Foundations, 36(1):1–12, 1996.

    Article  Google Scholar 

  12. Herle I., Hypoplastizität und Granulometrie einfacher Korngerüste. Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, 1997. Heft 142.

    Google Scholar 

  13. Herle I. and Doanh T., Verification of a hypoplastic model with static liquefaction tests on Hostun RF sand. In D. Lo Presti, editor, Proc. 4th Int. Symp. on Pre-failure Deformation Characteristics of Geomaterials, Torino, 1999. Balkema.

    Google Scholar 

  14. Herle I. and Gudehus G.,. Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mechanics of Cohesive-Frictional Materials, 1999. In print.

    Google Scholar 

  15. Hyodo M., Tanimizu H., Noriyuki Y., Murata H., Undrained cyclic and monotonic triaxial behaviour of saturated loose sand. Soils and Foundations, 34(1):19–32, 1994.

    Article  Google Scholar 

  16. Ibraim E. Différents aspects du comportement des sables à partir d’essais triaxiaux: des petites déformations à la liquéfaction statique. PhD thesis, ENTPE — INSA Lyon, 1998.

    Google Scholar 

  17. Ibraim E., Doanh T., Minimum undrained strength of anisotropically consolidated loose Hostun RF sand. In A. Asaoka, T. Adachi, and F. Oka, editors, IS-Nagoya’97: Deformation and Progressive Failure in Geomechanics, pages 623–628. Pergamon, 1997.

    Google Scholar 

  18. Imposimato S. and Nova R., An investigation on the uniqueness of the incremental response of elastoplastic models for virgin sand. Mechanics of Cohesive-Frictional Materials, 3:65–87, 1998.

    Article  Google Scholar 

  19. Kolymbas D., Generalized hypoelastic constitutive equation. In Saada and Bianchini, editors, Constitutive Equations for Granular Non-Cohesive Soils, pages 349–366. Balkema, 1988.

    Google Scholar 

  20. R. S. Ladd R. S., Preparing test specimens using undercompaction. Geotech-nical Testing Journal, 1(1):16–23, 1978.

    Article  Google Scholar 

  21. Lade P. V. and R. B. Nelson R. B., Instability of granular materials with nonassociated flow. Journal of Engrg. Mech. ASCE, 114(12):2173–2191, 1988.

    Article  Google Scholar 

  22. Lade P. V. and R. B. Nelson R. B., Modelling the elastic behaviour of granular materials. International Journal of Numerical and Analytical Methods in Geomechanics, 11:521–542, 1987.

    Article  Google Scholar 

  23. Lanier J., Di Prisco C., and Nova R., Etude expérimentale et analyse théorique de l’anisotropie induite du sable Hostun. Revue Française de Géotechnique, 57:59–74, 1993.

    Google Scholar 

  24. Matiotti R., Analisi sperimentale del fenomeno della liquefazione statica delle sabbie sciolte e sue applicazioni numeriche. PhD thesis. Politecnico di Milano. 1996.

    Google Scholar 

  25. Niemunis A., Hypoplasticity vs. elastoplasticity, selected topics. In D. Kolymbas, editor, Modern approaches to plasticity, pages 278–307. Elsevier, 1993.

    Google Scholar 

  26. Nova R., ’sinfonietta classica‘: An exercise on classical soil modelling. In Saada and Bianchini, editors, Constitutive Equations for Granular Non-Cohesive Soils, pages 501–519. Balkema, 1988.

    Google Scholar 

  27. Nübel K., 1999. Personal communication.

    Google Scholar 

  28. Nübel K. and Karcher C, FE simulations of granular material with a given frequency distribution of voids as initial condition. Granular Matter, 1:105–112, 1998.

    Article  Google Scholar 

  29. Rivlin R.and Ericksen J., Stress-deformation relations for isotropic materials. J. Rat. Mech. Anal., 4:323–425, 1955.

    MathSciNet  MATH  Google Scholar 

  30. von Wolffersdorff P.-A., A hypoplastic relation for granular materials with a predefined limit state surface. Mechanics of Cohesive-Frictional Materials, 1:251–271, 1996.

    Article  Google Scholar 

  31. Wu W., Investigation of rapid cavity expansion. 1998. Oral presentation at Euroconference: Developments and perspectives of hypoplasticity, Innsbruck.

    Google Scholar 

  32. Wu W. and Bauer E., A simple hypoplastic constitutive model for sand. International Journal of Numerical and Analytical Methods in Geomechanics, 18:833–862, 1994.

    Article  MATH  Google Scholar 

  33. Wu W., Bauer E., and Kolymbas D., Hypoplastic constitutive model with critical state for granular materials. Mechanics of Materials, 23:45–69, 1996.

    Article  Google Scholar 

  34. Wu W. and Niemunis A., Failure criterion, flow rule and dissipation function derived from hypoplasticity. Mechanics of Cohesive-Frictional Materials, 1:145–163, 1996.

    Article  Google Scholar 

  35. Wu W., Simple critical state model for sand. In NUMOG VII, Graz, 1999. A.A.Balkema.

    Google Scholar 

  36. Yamamuro J.A. and Lade P. V., Strain localization in extension tests on granular materials. Journal of Engrg. Mech. ASCE, 121(7):828–836, 1995.

    Article  Google Scholar 

  37. Yamamuro J.A. and Lade P. V., Static liquefaction of very loose sands. Canadian Geotechnical Journal, 34(6):905–917, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herle, I., Doanh, T., Wu, W. (2000). Comparison of hypoplastic and elastoplastic modelling of undrained triaxial tests on loose sand. In: Kolymbas, D. (eds) Constitutive Modelling of Granular Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57018-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57018-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63115-3

  • Online ISBN: 978-3-642-57018-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics