Advertisement

Optimization pp 473-497 | Cite as

On Some Recent Advances and Applications of D.C. Optimization

  • Hoang Tuy
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 481)

Abstract

We review some recent advances of d.c. optimization methods in the analysis and solution of specially structured nonconvex optimization problems, including problems from continuous location, nonconvex quadratic programming and monotonic optimization.

Key words

D.C. Optimization continuous location distance geometry nonconvex quadratic programming semi-definite programming branch and bound algorithm tight bounding normal branching variables decoupling SDP relaxations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Khayyal, F. A., Tuy, H., Zhou, F. (1997) Large-scale single facility continuous location by d.c. optimization. Preprint, School of Industrial and Systems Engineering, Georgia Institute of Technology, AtlantaGoogle Scholar
  2. 2.
    Al-Khayyal, F.A., Tuy, H., Zhou, F. (1997) D.C. optimization methods for multisource location problems. Preprint, School of Industrial and Systems Engineering, Georgia Institute of Technology, AtlantaGoogle Scholar
  3. 3.
    Al-Khayyal, F.A., Larsen, C., Van Voorhis, T. (1995) A relaxation method for nonconvex quadratically constrained quadratic program. Journal of Global Optimization 6, 215–230CrossRefGoogle Scholar
  4. 4.
    Androulakis, I.P., Maranas, C.D., Floudas, C.A. (1995) αBB: A global optimization method for general constrained nonconvex problems. Journal of Global Optimization 7, 337–363CrossRefGoogle Scholar
  5. 5.
    Aneja, Y.P., Parlar, M. (1994) Algorithms for Weber facility location in the presence of forbidden regions and/or barriers to travel. Transportation Science 28, 70–216CrossRefGoogle Scholar
  6. 6.
    Apkarian, P., Tuan, H.D. (1998) Robust control via concave optimization: local and global algorithms. Proceedings of the 37th Conference on Decision and ControlGoogle Scholar
  7. 7.
    Brimberg, J., Love, R.F. (1994) A location problem with economies of scale. Studies in Location Analysis 7, 9–19Google Scholar
  8. 8.
    Chen, R. (1983) Solution of minisum and minimax location-allocation problems with euclidean distances. Naval Research Logistics Quaterly 30, 449–459CrossRefGoogle Scholar
  9. 9.
    Chen, R. (1988) Conditional minisum and minimax location-allocation problems in Euclidean space. Transportation Science 22, 157–160CrossRefGoogle Scholar
  10. 10.
    Chen, P., Hansen, P., Jaumard, B., Tuy, H. (1992) Weber’s problem with attraction and repulsion. Journal of Regional Science 32, 467–409CrossRefGoogle Scholar
  11. 11.
    Floudas, C., Visweswaran, V. (1995) Quadratic Optimization. In: Horst R., Pardalos P. (Eds.), Handbook of Global Optimization. Kluwer, 217–269Google Scholar
  12. 12.
    Fujie, T., Kojima, M. (1997) Semidefinite programming relaxation for nonconvex quadratic programs. Journal of Global Optimization 10, 367–380CrossRefGoogle Scholar
  13. 13.
    Hansen, P., Jaumard, B., Tuy, H. (1995) Global optimization, in location. In: Zvi Dresner (Ed.) Facility Location: a Survey of Applications and Methods. Springer, Heidelberg, Berlin, 43–67Google Scholar
  14. 14.
    Hansen, P., Peeters, D., Thisse, J.F. (1982) An algorithm for a constrained Weber problem. Management Science 28, 1285–1295CrossRefGoogle Scholar
  15. 15.
    Horst, R., Tuy, H. (1996) Global Optimization. Springer, Heidelberg, Berlin, 3rd editionGoogle Scholar
  16. 16.
    Konno, H., Kuno, T. (1995) Multiplicative Programming Problems. In: Horst R., Pardalos P. (Eds.) Handbook of Global Optimization. Kluwer, 369–406Google Scholar
  17. 17.
    Konno, H., Thach, P.T., Tuy, H. (1997) Optimization on low rank nonconvex structures, KluwerGoogle Scholar
  18. 18.
    Leary, R.H. (1997) Global optima of Lennard-Jones clusters. Journal of Global Optimization 11, 35–53CrossRefGoogle Scholar
  19. 19.
    Maranas, C.D., Floudas, C.A. (1993) A global Optimization method for Weber’s problem with attraction and repulsion. In: Hager W.W., Heran D.W., Pardalos P.M. (Eds.) Large Scale Optimization: State of the Art. Kluwer, 1–12Google Scholar
  20. 20.
    Nesterov, J.E., Nemirovski, A.S. (1994) Interior Point Polynomial Methods in Convex Programming: Theory and Applications. SIAM, PhiladelphiaGoogle Scholar
  21. 21.
    Rubinov, A., Tuy, H., Mays, H. (1998) Algorithm for a Monotonic Global Optimization Problem, Preprint, University of Ballarat, Ballarat, AustraliaGoogle Scholar
  22. 22.
    Saff, E.B., Kuijlaars, A.B. J. (1997) Distributing many points on a sphere. Mathematical Intelligencer 10, 5–11CrossRefGoogle Scholar
  23. 23.
    Sherali, H.D., Tuncbilek, C.H. (1995) A reformulation-convexification approach to solving nonconvex quadratic programming problems. Journal of Global Optimization 7, 1–31CrossRefGoogle Scholar
  24. 24.
    Sherali, H.D., Tuncbilek, C.H. (1997) New reformulation/linearization/ convexification relaxations for univariate and multivariate polynomial programming problems. Operations Research Letters 21, 1–9CrossRefGoogle Scholar
  25. 25.
    Shor, N.Z., Stetsenko, S.I. (1989) Quadratic extremal problems and nondifferentiable optimization (in Russian). Naukova Dumka, KievGoogle Scholar
  26. 26.
    Thach, P.T. (1993) D.C. sets, D.C. functions and nonlinear equations. Mathematical Programming 58, 415–428CrossRefGoogle Scholar
  27. 27.
    Tuy, H. (1995) D.C. Optimization: Theory, Methods and Algorithms. In: Horst R., Pardalos P. (Eds.) Handbook of Global Optimization. Kluwer, 149–216Google Scholar
  28. 28.
    Tuy, H. (1998) Convex Analysis and Global Optimization. KluwerGoogle Scholar
  29. 29.
    Tuy, H. (1992) On nonconvex optimization problems with separated nonconvex variables. Journal of Global Optimization 2, 133–144CrossRefGoogle Scholar
  30. 30.
    Tuy, H. (1995) D.C. Optimization: Theory, Methods and Algorithms. In: Horst R., Pardalos P. (Eds.) Handbook on Global Optimization. Kluwer, 149–216Google Scholar
  31. 31.
    Tuy, H. (1996) A General D.C. Approach to Location Problems. In: Floudas C.A., Pardalos P.M. (Eds.) State of the Art in Global Optimization: Computational Methods and Applications. Kluwer, 413–432Google Scholar
  32. 32.
    Tuy, H., Alkhayyal, F.A., Zhou, F. (1995) D.C. optimization method for single facility location problem. Journal of Global Optimization 7, 209–227CrossRefGoogle Scholar
  33. 33.
    Tuy, H. (1999) Normal sets, polyblocks and monotonic optimization. To appear in Vietnam Journal of Mathematics, vol. 27.Google Scholar
  34. 34.
    L. Vandenberge, L., Boyd, S. (1995) A primal-dual potential reduction method for problems involving matrix inequalities. Mathematical Programming 69, 205–206Google Scholar
  35. 35.
    Vandenberge, L., Boyd, S. (1996) Semidefinite Programming. SIAM Review 38, 49–95CrossRefGoogle Scholar
  36. 36.
    Xue, G.L. (1997) Minimum inter-particle distance at global minimizers of Lennard-Jones clusters. Journal of Global Optimization 11, 83–90CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Hoang Tuy
    • 1
  1. 1.Institute of MathematicsBo Ho, HanoiVietnam

Personalised recommendations