Skip to main content

Large Scale Molecular Conformation via the Exact Distance Geometry Problem

  • Chapter
Optimization

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 481))

Abstract

We develop in this paper a method based on a d.c. (difference of convex functions) optimization approach called DCA for solving large-scale exact distance geometry problem. Requiring only matrix-vector products and one Cholesky factorization, the DCA seems to be robust and efficient in large scale problems. Moreover it allows exploiting sparsity of the given distance matrix. A technique using the triangle inequality to generate a complete approximate distance matrix was investigated in order to compute a good starting point for the DCA. Numerical simulations of the molecular conformation problems with up to 12288 variables are reported which prove the robustness, the efficiency, and the globality of our algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blumenthal, L.M. (1953) Theory and Applications of Distance Geometry. Oxford University Press

    Google Scholar 

  2. Crippen, G.M., Havel, T.F. (1998) Distance Geometry and Molecular Conformation. John Wiley&Sons

    Google Scholar 

  3. De Leeuw, J. (1977) Applications of convex analysis to multidimensional scaling. In: Barra J.R. et al. (Eds.) Recent developments in statistics, North-Holland Publishing Company, 133–145

    Google Scholar 

  4. Glun, W., Hayden, T.L., Raydan, M.(1993) Molecular Conformation from distance matrices. J. Comp. Chem. 14, 114–120

    Article  Google Scholar 

  5. Havel, T.F. (1991) An evaluation of computational strategies for use in the determination of protein structure from distance geometry constraints obtained by nuclear magnetic resonance. Prog. Biophys. Mol. Biol. 56, 43–78

    Article  Google Scholar 

  6. Hendrickson, B.A. (1995) The molecule problem: Exploiting structure in global optimization. SIAM J. Optimization 5, 835–857.

    Article  Google Scholar 

  7. Le Thi Hoai An (1997) Contribution à l’optimisation non convexe et l’optimisation globale: Théorie, Algorithmes et Applications. Habilitation à Diriger des Recherches, Université de Rouen

    Google Scholar 

  8. Le Thi Hoai An, Pham Dinh Tao (1997) Solving a class of linearly constrained indefinite quadratic problems by D.c. algorithms. Journal of Global Optimization 11, 253–285

    Article  Google Scholar 

  9. Moré, J.J., Wu, Z. (1997) Global continuation for distance geometry problems. SIAM J. Optimization 8, 814–836

    Article  Google Scholar 

  10. Moré, J.J., Wu, Z. (1996) Issues in large-scale Molecular Optimization. Preprint MCS-P539-1095, Argonne National Laboratory, Argonne, Illinois 60439

    Google Scholar 

  11. Pham Dinh Tao, Souad El. B. (1986) Algorithms for solving a class of non convex optimization problems. Methods of subgradients. In: Hiriart Urruty J.B. (Ed.) Fermat days 85. Mathematics for Optimization. Elsevier Science Publishers B.V., North-Holland, 249–271

    Google Scholar 

  12. Pham Dinh Tao, Souad El. B. (1988) Duality in d.c. (difference of convex functions) optimization. Subgradient methods. Trends in Mathematical Optimization, International Series of Numer Math. 84, Birkhauser, 277–293

    Google Scholar 

  13. Pham Dinh Tao, Le Thi Hoai An (1994) Stabilité de la dualité lagrangienne en optimisation d.c. (différence de deux fonctions convexes) C.R. Acad. Paris 318, Série I, 79–384

    Google Scholar 

  14. Pham Dinh Tao, Le Thi Hoai An (1998) D.c. optimization algorithms for trust region problem. SIAM J. Optimization 8, No 2, 476–505

    Article  Google Scholar 

  15. Pham Dinh Tao, Le Thi Hoai An (1997) Convex analysis approach to d.c. programming: Theory, Algorithms and Applications (dedicated to Professor Hoang Tuy on the occasion of his 70th birthday). Acta Mathematica Vietnamica 22, No 1, 289–355

    Google Scholar 

  16. Rockafellar, R.T. (1970) Convex Analysis. Princeton University, Princeton

    Google Scholar 

  17. Saxe, J. B. (1979) Embeddability of Weighted Graphs in k-space is Strongly NP-hard. Proc. 17 Allerton Conference in Communications, Control and Computing, 480–489

    Google Scholar 

  18. Varga, R. (1962) Matrix iterative analysis. Prentice Hall

    Google Scholar 

  19. Zou, Z., Richard H. Bird, Schnabel, R.B. (1997) A Stochastic/Pertubation Global Optimization Algorithm for Distance Geometry Problems. J. of Global Optimization 11, 91–105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

An, L.T.H., Tao, P.D. (2000). Large Scale Molecular Conformation via the Exact Distance Geometry Problem. In: Nguyen, V.H., Strodiot, JJ., Tossings, P. (eds) Optimization. Lecture Notes in Economics and Mathematical Systems, vol 481. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57014-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57014-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66905-0

  • Online ISBN: 978-3-642-57014-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics