Skip to main content

Abstract

While plasma etching of wafers has been a mainstay of the semiconductor industry for more than 25 years, only in the last decade has dry-etch processing become interesting to mask manufacturers. The reason for the late introduction of this technology becomes obvious when the methodologies used to image silicon wafers are examined. Contact printing, which uses a mercury arc lamp as a light source, satisfied the early needs of the industry when critical dimensions (CDs) werewell over 2 µm. The industry standard for a mask with CDs less than 5 µm was a quartz or glass plate on which a thin 80-100 nm layer of chrome was deposited. Resist was spun onto the mask and exposed using either an optical reduction camera or, as the industry became more sophisticated, an electron beam writing system. Because the smallest features were many micrometers in width, the patterns were defined simply by placing a the mask in a wet etchant such as cerium ammonium nitrate. The resist was resistant to the chrome and etch and could easily be removed chemically or in a plasma asher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The National Technology Roadmap for Semiconductors, (Sematech, 1997).

    Google Scholar 

  2. H. Nakata, K. Nishioka, and H. Abe, J. Vac. Sci. Technol. 17(6), 1351–11357 (1980).

    Article  CAS  Google Scholar 

  3. Y. Suzuki, T. Yamazaki, and H. Nakata, J. Vac. Sci. Technol. B 21(9), 1328–1332 (1982).

    CAS  Google Scholar 

  4. R.A. Usmanov and V.A. Khamaev, Russ J. Phys. Chem. 52, 1717 (1978).

    Google Scholar 

  5. H.M. Naguib, R.A. Bond, and H.J. Poley, Presented at 1st Canadian Semiconductor Technology Conference, Ottawa (1982).

    Google Scholar 

  6. C.J. Mogab, J. Electrochem. Soc. 124, 1262 (1977).

    Article  CAS  Google Scholar 

  7. M. deGrandpre, K. Graziano, S.D. Thompson, H. Liu, and L. Blum, Proc. SPIE 923, 158 (1988).

    Article  CAS  Google Scholar 

  8. S. Tedesco, C. Pierrat, J.M. Lamure, C. Sourd, J. Martin, and J.C. Guibert, Proc. SPIE 1264, 144 (1990).

    Article  CAS  Google Scholar 

  9. T. Coleman and P. Buck, Proc. SPIE 2621, 62–72 (1995).

    Article  CAS  Google Scholar 

  10. T. Coleman, P. Buck, and D. Johnson, Proc. SPIE 2884, 92 (1996).

    Article  CAS  Google Scholar 

  11. C. Constantine, D.J. Johnson, R.J. Westerman, T. Coleman, and T. Faure, Proc. SPIE 3096, 11 (1997).

    Article  CAS  Google Scholar 

  12. H. Tarumoto, K. Maetoko, S. Yamashita, S. Aoyama, and H. Morimoto, Proc. SPIE 2512, 21 (1995).

    Article  CAS  Google Scholar 

  13. W. Tsai, F. Chen, M. Kamna, S. Chegwidden, S. Labovitz, J. Farnsworth, and G. Dao, Proc. SPIE 3412, 149 (1998).

    Article  CAS  Google Scholar 

  14. Y. Watakabe, S. Matsuda, A. Shigetomi, M. Hirosue, T. Kato, and H. Nakata, J. Vac. Sci. Technol. B 4(4), 841 (1986).

    Article  CAS  Google Scholar 

  15. T. Toda, J. Electrochem. Soc. 130, 912 (1983).

    Article  Google Scholar 

  16. D.J. Resnick, R. Tarascon, Dry Etching of Molybdenum Suicide Photomasks, (AT&T Bell Laboratories Internal Memorandum, 1990).

    Google Scholar 

  17. Shigetomi, S. Matsuda, K. Moriizumi, H. Kusunose, T. Imai, and Y. Watakabe, J. Vac. Sci. Technol. B 8(2), 117 (1990).

    Article  CAS  Google Scholar 

  18. C. Constantine, D. Johnson, R.J. Westerman, and A. Hourd, Proc. SPIE 3546, (1998).

    Google Scholar 

  19. B.W. Smith, A. Bourov, L. Zavyalova, and M. Cangemi, Proc. SPIE 3676, Emerging Lithographic Technologies 111 (1999).

    Google Scholar 

  20. M.D. Levenson et al., IEEE Trans. Electron Devices 29(12), (1980).

    Google Scholar 

  21. B.J. Lin, Solid State Technol. 35, 43 (1992).

    Article  Google Scholar 

  22. R. Jonckheere, K. Ronse, O. Popa, and L. Van den hove, J. Vac. Sci. Technol. B 12(6), 3764 (1994).

    Article  Google Scholar 

  23. H. Miyashita, H. Fujita, T. Yokoyama, N. Hayashi, and H. Sano, Proc. SPIE 2621, 614 (1995).

    Article  Google Scholar 

  24. Quartz Etching for PSM. (Etec Application Report A900-3130).

    Google Scholar 

  25. C. Constantine and L. Heckerd, Proc. SPIE 3412, 220 (1998).

    Article  CAS  Google Scholar 

  26. R.A. Lawes, Microelectron. Eng. 23, 23 (1994).

    Article  CAS  Google Scholar 

  27. H. Mohri, M. Takahashi, K. Mikama, H. Miyashita, N. Hayashi, and H. Sano, SPIE Proc. 2322, 288 (1994).

    Article  CAS  Google Scholar 

  28. B.W. Smith, C. Fonseca, L. Zavyalova, Z. Alam, and A. Bourov, J. Vac. Sci. Technol. B 15(6), 2259 (1997).

    Article  CAS  Google Scholar 

  29. J.M. Warlaumount and J.R. Maldanado, J. Vac. Sci. Technol. 19(4), 1200 (1991).

    Article  Google Scholar 

  30. Handbook of VLSI Microlithography, (eds. W.B. Glendinning and J.N. Helbert), (Noyes Publications, 1991).

    Google Scholar 

  31. K. Early, M.L. Schattenburg, and H.I. Smith, Microelectron. Eng. 11, 317 (1990).

    Article  CAS  Google Scholar 

  32. Y. Chen, R.K. Kupka, F. Rousseaux, F. Carcenac, D. Decanini, M.F. Ravet, and H. Launois, J. Vac. Sci. Technol. B 12(6), 3959 (1994).

    Article  CAS  Google Scholar 

  33. D.L. Spears and H.I. Smith, Solid State Technol. 15, 21 (1972).

    Article  Google Scholar 

  34. R. Viswanathan, D. Seeger, A. Bright, T. Bucelot, A. Pomerene, K. Petrillo, P. Blauner, P. Agnello, J. Warlaumont, J. Conway, and D. Patel, Microelectron. Eng. 23, 263 (1994).

    Article  Google Scholar 

  35. J.S. Greeneich, IEEE Trans. Electron Devices, 22, 434 (1975).

    Article  Google Scholar 

  36. W.A. Johnson, R.A. Levy, D.J. Resnick, T.E. Saunders, and A.W. Yanof, J. Vac. Sci. Technol B 5, 257 (1987).

    Article  CAS  Google Scholar 

  37. P.A. Seese, K.D. Cummings, D.J. Resnick, A.W. Yanof, and W.A. Johnson, Proc. SPIE 1924, 457 (1993).

    Article  CAS  Google Scholar 

  38. G.E. Georgiou, C.A. Jankoski, and T. Palumbo, Proc. SPIE 471, 96 (1984).

    Article  CAS  Google Scholar 

  39. W. Chu, M.L. Schattenburg, and H.I. Smith, Microcircuit Eng. 91 (1991).

    Google Scholar 

  40. W.J. Dauksher, D.J. Resnick, W.A. Johnson, and A.W. Yanof, Microelectron. Eng. 23, 235 (1994).

    Article  CAS  Google Scholar 

  41. C.W. Jurgensen, R.R. Kola, A.E. Novembre, W.W. Tai, J. Frackoviak, L.E. Trimble, and G.K. Celler, J. Vac. Sci. Technol. B 9, 3280 (1991).

    Article  CAS  Google Scholar 

  42. Y. Limura, H. Miyashita, and H. Sano, J. Vac. Sci. Technol. B 7(6), 1680 (1989).

    Article  Google Scholar 

  43. K. Fujii, T. Yoshihara, Y. Tanaka, K. Suzuki, T. Nakajima, T. Miyatake, E. Orita, and K. Ito, J. Vac. Sci. Technol. B 12(6), 3949 (1994).

    Article  CAS  Google Scholar 

  44. Y.-C. Ku, L.-P. Ng, R. Carpenter, K. Lu, and H.I. Smith, J. Vac. Sci. Technol. B 9, 3297 (1991).

    Article  CAS  Google Scholar 

  45. T. Yoshihara and K. Suzuki, J. Vac. Sci. Technol. B 12(6), 4001 (1994).

    Article  CAS  Google Scholar 

  46. R.R. Kola et al., presented at the 38th International Symposium on Electron, Ion, and Photon Beams (unpublished, 1994).

    Google Scholar 

  47. T. Inoue, T. Kanayama, and M. Komuro, J. Vac. Sci. Technol. 11, 2943 (1993).

    Google Scholar 

  48. K. Marumoto, H. Yabe, S. Aya, K. Kise, and Y. Matsui, Proc. SPIE 2194, 221 (1994).

    Article  CAS  Google Scholar 

  49. K. Marumoto, H. Yabe, S. Aya, M Matsuba, K. Sasaki, Y. Watakabe, and T. Matsui, Jpn. J. Appl. Phys. 32, 5918 (1993).

    Article  CAS  Google Scholar 

  50. M. Sugawara, M. Kobayashi, and Y. Yamaguchi, J. Vac. Sci. Technol. B 76), 1561 (1989).

    Article  Google Scholar 

  51. T. Yoshihara, S. Kotsuji, and K. Suzuki, J. Vac. Sci. Technol. B 12, 4001 (1994).

    Article  CAS  Google Scholar 

  52. T. Yoshihara, S. Kotsuji, K. Fujii, S. Tsuboi, and K. Suzuki, J. Vac. Sci. Technol. 166), 3491 (1998).

    Google Scholar 

  53. W.J. Dauksher, D.J. Resnick, K.D. Cummings, J. Baker, R.B. Gregory, N.D. Theodore, J.A. Chan, W.A. Johnson, C.J. Mogab, M.-A. Nicolet, and J.S. Reid, J. Vac. Sci. Technol. B 13(6), 3103 (1995).

    Article  CAS  Google Scholar 

  54. D.J. Resnick, S.V. Pendharkar, W.J. Dauksher, K.D. Cummings, W.A. Johnson, and C. Constantine, Microelectron. Eng. 30 (1996).

    Google Scholar 

  55. S.V. Pendharkar, D.J. Resnick, W.J. Dauksher, and K.D. Cummings, J. Vac. Sci. Technol. A 15(3), 816 (1997).

    Article  Google Scholar 

  56. D.J. Resnick, S.V. Pendharkar, W.J. Dauksher, K.D. Cummings, M.F. Laudon, B. Romanowicz, P. Renaud, and R.L. Engelstad, Micro Nano Eng. 41/42 (1998).

    Google Scholar 

  57. S.V. Pendharkar, D.J. Resnick, M.F. Laudon, W.J. Dauksher, P.J.S. Mangat, P.A. Seese, and K.D. Cummings, J. Vac. Sci. Technol. B 16(6), 3500 (1998).

    Article  CAS  Google Scholar 

  58. M.F. Laudon, K.A. Thole, R.L. Engelstad, D.J. Resnick, K.D. Cummings, and W.J. Dauksher, J. Vac. Sci. Technol. 13(6), 3050 (1995).

    Article  CAS  Google Scholar 

  59. Concepts and Applications of Finite Element Analysis, (eds. by R.D. Cook, D.S. Malkus, and M.E. Plesha) (Wiley, New York, 1989).

    Google Scholar 

  60. J. Trübe, H. Yabe, S. Aya, K. Marumoto, and Y. Matsui, J. Vac. Sci. Technol. 11(6), 2990 (1993).

    Article  Google Scholar 

  61. W.J. Dauksher, D.J. Resnick, S.M. Smith, S.V. Pendharkar, H.G. Thompkins, K.D. Cummings, P.A. Seese, P.J.S. Mangat, and J.A. Chan, J. Vac. Sci. Technol. B 15(6), 2232 (1997).

    Article  CAS  Google Scholar 

  62. M.B. Heritage, J. Vac. Sci. Technol. 12, 1135 (1975).

    Article  Google Scholar 

  63. L.R. Harriott, S.D. Berger, J.A. Liddle, G.P. Watson, and M.M. Mkrtchyan, J. Vac. Sci. Technol. 13(6), 2404 (1995).

    Article  CAS  Google Scholar 

  64. G.R. Bogart, A.E. Novembre, A. Komblit, M.L. Peabody, R.C. Farrow, M.I. Blakey, R.J. Kasica, J.A. Liddle, T.E. Saunders, and C.S. Knurek, Proc. SPIE 3676, Emerging Lithographie Technologies 111 (1999).

    Google Scholar 

  65. J.A. Liddle, M.I. Blakey, C.S. Knurek, M.M. Mkrtchyan, A.E. Novembre, L. Ocala, T. Saunders, and W.K. Waskiewicz, Microelectron. Eng. 41/42, 155 (1998).

    Article  CAS  Google Scholar 

  66. J. A. Liddle, H. A. Huggins, and G. P. Watson, J. Vac. Sei. Technol B 13(6), 2483 (1995).

    Article  CAS  Google Scholar 

  67. L.R. Harriott, J. Vac. Sci. Technol. B 15(6), 2130 (1997).

    Article  CAS  Google Scholar 

  68. R. Engelstad and E.G. Lovell, Proc. SPIE 3676, Emerging Lithographie Technologies 111 (1999).

    Google Scholar 

  69. T.E. Jewell et al. Proc. SPIE 1263, 80 (1990).

    Google Scholar 

  70. C.W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, J. Vac. Sci. Technol 16(6), 3142 (1998).

    Article  CAS  Google Scholar 

  71. Charles Gwyn et al., Extreme Ultraviolet Lithography, September 1997.

    Google Scholar 

  72. P. Mangat, S. Hector, M. Thompson, W. Daulksher, J. Cobbe, K. Cummings, D. Mancini, D. Resnick, G. Cardinale, C. Henderson, P. Kearney, and M. Wedowski, presented at the 42nd International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication, 1999.

    Google Scholar 

  73. J.A. Randall, M.A. Reed, R.J. Matyi, T.M. Moore, R.J. Aggawal, and A.E. Wetsel, Proc. SPIE 945, 137 (1988).

    Article  CAS  Google Scholar 

  74. G. Gross, J. Vac. Sci. Technol. B 15(6), 2136 (1997).

    Article  CAS  Google Scholar 

  75. G. Gross, R. Kaesmaier, H. Loschner, and G. Stengl, J. Vac. Sci. Technol. B 16(6), 3150 (1998).

    Article  CAS  Google Scholar 

  76. U. Behringer and R. Speidel, Optik (Stuttgart) 62, 59 (1982).

    CAS  Google Scholar 

  77. J. Wesson, J. Torres, H.R. Rampersad, J.C. Wolfe, P. Ruchhoeft, M. Herbordt, and H. Loschner, J. Vac. Sci. Technol. B 15(6), 2214 (1997).

    Article  Google Scholar 

  78. S.V. Pendharkar, J.C. Wolfe, H.R. Rampersad, Y.-L. Chau, D.L. Licon, M.D. Morgan, W.E. Home, R.C. Tiberio, and J.N. Randall, J. Vac. Sci. Technol. B 13(6), 2588 (1995).

    Article  CAS  Google Scholar 

  79. I.W. Rangelow et al., J. Vac. Sei. Technol. B 16(6), 3592 (1998).

    Article  CAS  Google Scholar 

  80. H. Loschner, unpublished.

    Google Scholar 

  81. M. Sprague, W. Semke, R. Engelstad, E. Lovell, A. Chalupka, H. Loschner, and G. Stengl, Micro Nano Eng. 41/42, 225 (1998).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Resnick, D.J. (2000). Photomask Etching. In: Shul, R.J., Pearton, S.J. (eds) Handbook of Advanced Plasma Processing Techniques. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56989-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56989-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63096-5

  • Online ISBN: 978-3-642-56989-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics