Advertisement

In vivo Measurement of the Optical Properties of Human Tissues in the Wavelength Range 610–1010 nm

  • R. Cubeddu
  • A. Pifferi
  • P. Taroni
  • A. Torricelli
  • G. Valentini
Conference paper
Part of the Series of the International Society on Optics Within Life Sciences book series (3718, volume 5)

Abstract

In vivo absorption and scattering spectra of different human tissues were obtained using a system for time-resolved reflectance measurements in the wavelength range from 610 nm to 1010 nm, every 5 nm. The system is based on a dye laser and a Ti:Sapphire laser as light sources and an electronic chain for time-correlated single-photon counting for detection. Measurements were performed on the breast, the arm, and the abdomen of healthy volunteers. The scattering spectra are decreasing upon increasing the wavelength, while the absorption spectra show the spectral features of oxy- and deoxyhemoglobin, of water, and of lipids.

Keywords

Sapphire Laser Electronic Chain Optical Society ofAmerica Optical Difference Tissue Optical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Photon propagation in tissue III, D.A.Benaron, B.Chance, and M.Ferrari, Editorss, Proceedings of SPIE, vol.3194, (1988).Google Scholar
  2. 2.
    Advances in Optical Imaging and Photon Migration, Technical Digest, Optical Society of America, Washington DC, (1988).Google Scholar
  3. 3.
    B.C.Wilson, W.Patrick, and D. M.Lowe, Photochem. Photobiol. 42, 153 (1985).CrossRefGoogle Scholar
  4. 4.
    K.A.Kang, B.Chance, S.Zhao, S.Srinivasan, E.Patterson, and R.Troupin, SPIE Proc. 1888, 487 (1993).ADSCrossRefGoogle Scholar
  5. 5.
    H.Heusmann, J.Kölzer, and G.Mitic, J.Biomed. Opt. 1, 425 (1996).ADSCrossRefGoogle Scholar
  6. 6.
    C. af Klinteberg, R.Berg, C.Lindquist, S.Andersson-Engels, and S.Svanberg, SPIE Proc. 2626, 149 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    K.Suzuki, Y.Yamashita, K.Ohta, M.Kancko, M.Yoshida, and B.Chance, J.Biomed. Opt. 1, 330 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    S.J.Matcher, M.Cope, and D.T.Delpy, Appl. Opt. 36, 386 (1997).ADSCrossRefGoogle Scholar
  9. 9.
    R.C.Haskell, L.O.Svaasand, T.-T.Tsay, T.-C.Feng, M.S.McAdams, and B.J.Tromberg, J.Opt.Soc.Am.A 11, 2727 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    A.Pifferi, R.Cubeddu, P.Taroni, A.Torricelli, and G.Valentini, in Photon Migration in Tissues, K.G.Tranberg, L.O.Svaasand, J.M.Brunetaud and A.Katzir, Editorss, Proceedings of SPIE, vol. 3566, in press (1998).Google Scholar
  11. 11.
    R.Cubeddu, A.Pifferi, P.Taroni, A.Torricelli, and G.Valentini, Appl. Opt. 35, 4533 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • R. Cubeddu
    • 1
  • A. Pifferi
    • 1
  • P. Taroni
    • 1
  • A. Torricelli
    • 1
  • G. Valentini
    • 1
  1. 1.INFM-Dipartimento di Fisica and CEQSE-CNRPolitecnico di MilanoItaly

Personalised recommendations