Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 151 / 2))

Abstract

Modulation of the function of excretory organs by purine receptors is an ancient regulatory strategy adopted early in the course of vertebrate evolution. For instance, in the shark rectal gland, an excretory organ that evolved more than 400 million years ago, primordial adenosine receptors strongly influence the rate of sodium chloride transport and elimination (Forrest 1996). It is not surprising therefore that P1 and P2 receptors are important regulators of renal function in mammals. The purpose of this chapter is to summarize the available information regarding the physiology and pharmacology of renal P1 and P2 receptors and to discuss where this field will likely yield important advances in pharmacotherapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abels BC, Callis JT, Branch RA, Sabra R (1992) Influence of the adenosine receptor antagonist, CGS 15943A, on renal function after reconstruction of chronic renal artery stenosis in the dog. J Pharmacol Exp Ther 262:166–172

    PubMed  CAS  Google Scholar 

  • Agmon Y, Dinour D, Brezis M (1993) Disparate effects of adenosine A1- and A2-recep tor agonists on intrarenal blood flow. Am J Physiol 265:F802–F806

    PubMed  CAS  Google Scholar 

  • Aki Y, Tomohiro A, Nishiyama A, Kiyomoto K, Kimura S, Abe Y (1997) Effects of KW-3902, a selective and potent adenosine A1 receptor antagonists, on renal hemodynamics and urine formation in anesthetized dogs. Pharmacology 55:193–201

    PubMed  CAS  Google Scholar 

  • Albinus M, Finkbeiner E, Sosath B, Osswald H (1998) Isolated superfused juxta-glomerular cells from rat kidney:a model for study of renin secretion. Am J Physiol 275:F991– F997

    PubMed  CAS  Google Scholar 

  • Anderson RJ, Breckon R, Dixon BS (1991) ATP receptor regulation of adenylate cyclase and protein kinase C activity in cultured renal LLC-PK1 cells. J Clin Invest 87:1732–1738

    PubMed  CAS  Google Scholar 

  • Andoh TF, Terai T, Nakano K, Horiai H, Mori J, Kohsaka M (1991) Protective effects of FR113453, an adenosine A1- receptor antagonist, on experimental acute renal failure in rats. In: Proceedings of International Symposium on Acute Renal Failure; October 2–4, 1991; University of North Carolina at Chapel Hill; page 92

    Google Scholar 

  • Ansari Z, Baldwin DS (1976) Acute renal failure due to radio-contrast agents. Nephron 17:28–40

    PubMed  CAS  Google Scholar 

  • Arakawa K, Suzuki H, Naitoh M, Matsumoto A, Hayashi K, Matsuda H, Ichihara A, Kubota E, Saruta T (1996) Role of adenosine in the renal responses to contrast medium. Kidney Int 49:1199–1206

    PubMed  CAS  Google Scholar 

  • Arend LJ, Bakris GL, Burnett JC Jr, Megerian C, Spielman WS (1987a) Role for intrarenal adenosine in the renal hemodynamic response to contrast media. J Lab Clin Med 110:406–411

    Google Scholar 

  • Arend LJ, Burnatowska-Hledin MA, Spielman WS (1988) Adenosine receptor-mediated calcium mobilization in cortical collecting tubule cells. Am J Physiol 255:C581–C588

    PubMed  CAS  Google Scholar 

  • Arend LJ, Haramati A, Thompson CI, Spielman WS (1984) Adenosine-induced decrease in renin release: dissociation from hemodynamic effects. Am J Physiol 247:F447–F452

    PubMed  CAS  Google Scholar 

  • Arend LJ, Sonnenburgh WK, Smith WL, Spielman WS (1987b) A1 and A2 adenosine receptors in rabbit cortical collecting tubule cells. J Clin Invest 79:710–714

    Google Scholar 

  • Arend LJ, Thompson CI, Brandt MA, Spielman WS (1986) Elevation of intrarenal adenosine by maleic acid decreases GFR and renin release. Kid Int 30:656–661

    CAS  Google Scholar 

  • Bachmann S, Ramasubbu K (1997) Immunohistochemical colocalization of the α-subunit of neutrophil NADPH oxidase and ecto-5′-nucleotidase in kidney and liver. Kidney Int 51:479–482

    PubMed  CAS  Google Scholar 

  • Bailey MA, Imbert-Teboul M, Burnstock GT, Unwin RJ (1998) P2-purinoceptors in the rat thin limbs of Henle. Journal of the American Society of Nephrology 9:424A

    Google Scholar 

  • Bakris GL, Sauter ER, Hussey JL, Fisher JW, Gaber AO, Winsett R (1990) Effects of theophylline on erythropoietin production in normal subjects and in patients with erythrocytosis after renal transplantation. N Engl J Med 323:86–90

    PubMed  CAS  Google Scholar 

  • Balakrishnan VS, Coles GA, Williams JD (1993) A potential role for endogenous adenosine in control of human glomerular and tubular function. Am J Physiol 265:F504–F510

    Google Scholar 

  • Balakrishnan VS, Coles GA, Williams JD (1996a) Functional role of endogenous adenosine in human chronic renal disease. Exp Nephrol 4:26–36

    Google Scholar 

  • Balakrishnan VS, Coles GA, Williams JD (1996b) Effects of intravenous adenosine on renal function in healthy human subjects. Am J Physiol 271:F374– F381

    Google Scholar 

  • Balakrishnan VS, von Ruhland CJ, Griffiths DFR, Coles GA, Williams JD (1996c) Effects of a selective adenosine A1 recept or antagonist on the development of cyclosporin nephrotoxicity. Br J Pharmacol 117:879–884

    Google Scholar 

  • Baranowski RL, Westenfelder C (1994) Estimation of renal interstitial adenosine and purine metabolites by microdialysis. Am J Physiol 267:F174–F182

    PubMed  CAS  Google Scholar 

  • Barber R, Butcher RW (1981) The quantitative relationship between intracellular concentration and egress of cyclic AMP from cultured cells. Mol Pharmacol 19:38–43

    PubMed  CAS  Google Scholar 

  • Barber R, Butcher RW (1983) The egress of cyclic AMP from metazoan cells. Adv Cyclic Nucleotide Res 15:119–138

    CAS  Google Scholar 

  • Barchowsky A, Data JL, Whorton RA (1987) Inhibition of rennin release by analogues of adenosine in rabbit renal cortical slices. Hypertension 9:619–623

    PubMed  CAS  Google Scholar 

  • Barraco RA, Phillis JW, Campbell WR, Marcantonio PR, Salah RS (1986) The effects of central injections of adenosine analogs on blood pressure and heart rate in the rat. Neuropharmacology 25:675–680

    CAS  Google Scholar 

  • Barrett RJ, Droppleman DA (1993) Interactions of adenosine A1 receptor-mediated renal vasoconstriction with endogenous nitric oxide and ANG II. Am J Physiol 265:F651–F659

    PubMed  CAS  Google Scholar 

  • Barrett RJ, Wright KF (1994) A selective adenosine A1 receptor antagonist attenuates renal dysfunction during controlled hypotension with adenosine in rats. Anesth Analg 79:460–465

    PubMed  CAS  Google Scholar 

  • Baudouin-Legros M, Badou A, Paulais M, Hammet M, Teulon J (1995); Hypertonic NaCl enhances adenosine release and hormonal cAMP production in mouse thick ascending limb. Am J Physiol 269:F103–F109

    Google Scholar 

  • Beach RE, Good DW (1992) Effects of adenosine on ion transport in rat medullary thick ascending limb. Am J Physiol 263:F482–F487

    PubMed  CAS  Google Scholar 

  • Berthold H, Just A, Kirchheim HR, Osswald H, Ehmke H (1998) Renal haemodynamic responses to exogenous and endogenous adenosine in conscious dogs. J Physio 510:321–330

    CAS  Google Scholar 

  • Bidani AK, Churchill PC (1983) Aminophylline ameliorates glycerol-induced acute renal failure in rats. Can J Physiol Pharmacol 61:567–571

    PubMed  CAS  Google Scholar 

  • Bidani AK, Churchill PC, Packer W (1987) Theophylline-induced protection in myoglobinuric acute renal failure: further characterization. Can J Physiol Pharmacol 65:42–45

    PubMed  CAS  Google Scholar 

  • Blanco J, CaneJa EI, Mallol J, Lluis C, Franco R (1992) Characterization of adenosine receptors in brush-border membranes from pig kidney. Brit J Pharmacol 107:671–678

    CAS  Google Scholar 

  • Bohmann C, von KÜgelgen I, Rump LC (1997) P2-receptor modulation of noradrenergic neurotransmission in rat kidney. Brit J Pharmacol 121:1255–1262

    CAS  Google Scholar 

  • Bowmer CJ, Collis MG, Yates MS (1986) Effect of the adenosine antagonist 8-phenyltheophylline on glycerol-induced acute renal failure in the rat. Br J Pharmac 88:205–212

    CAS  Google Scholar 

  • Branch RA, Jackson EK, Jacqz E, Stein R, Ray WA, Ohnhaus EE, Meusers P, Heidemann H (1987) Amphotericin-B nephrotoxicity in humans decreased by sodium supplements with coadministration of ticarcillin or intravenous saline. Klin Wochenschr 65:500–506

    PubMed  CAS  Google Scholar 

  • Brenner BM, Lawler EV, Mackenzie HS (1996) The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int 49:1774–1777

    PubMed  CAS  Google Scholar 

  • Brown NJ, Porter J, Ryder D, Branch RA (1991) Caffeine potentiates the renin response to diazoxide in man. Evidence for a regulatory role of endogenous adenosine. J Pharmacol Exp Ther 256:56–61

    PubMed  CAS  Google Scholar 

  • Cai H, Batuman V, Puschett DB, Puschett JB (1994) Effect of KW-3902, a novel adenosine A1 receptor antagonist, on sodium-dependent phosphate and glucose transport by the rat renal proximal tubular cell. Life Sci 55:839–845

    PubMed  CAS  Google Scholar 

  • Cai H, Puschett DB, Guan S, Batuman V, Puschett JB (1995) Phosphate transport inhibition by KW 3902, an adenosine A1 receptor antagonist, is mediated by cyclic adenosine monophosphate. Am J Kidney Dis 26:825–830

    PubMed  CAS  Google Scholar 

  • Callis JT, Kuan CJ, Branch KR, Abels, BC, Sabra R, Jackson EK, Branch RA (1989) Inhibition of renal vasoconstriction induced by intrarenal hypertonic saline by the nonxanthine adenosine ant agonist CGS 15843A. J Pharmacol Exp Ther 248:1123–1129

    PubMed  CAS  Google Scholar 

  • Cannon ME, Twu BM, Yang CS, Hsu CH (1989) The effect of theophylline and cyclic adenosine 3′,5′-monophosphate on renin release by afferent arterioles. J Hyper 7:569–576

    CAS  Google Scholar 

  • Carlson MA, Ferraz AAB, Condon RE (1997) Urinary adenosine excretion in patients receiving amphotericin B. Surgery 121:190–193

    PubMed  CAS  Google Scholar 

  • Carmines PK, Inscho EW (1994) Renal arteriolar angiotensin responses during varied adenosine receptor activation. Hypertension 23:I114–I119

    Google Scholar 

  • Casavola V, Guerra L, Reshkin SJ, Jacobson KA, Murer H (1997) Polarization of adenosine effects on intracellular pH in A6 renal epithelial cells. Molecular Pharmacology 51:516–523

    PubMed  CAS  Google Scholar 

  • Casavola V, Guerra L, Reshkin SJ, Jacobson KA, Verrey F, Murer H (1996) Effect of adenosine on Na+ and Cl--currents in A6 monolayers. Receptor localization and messenger involvement. J Membr Biol 151:237–245

    PubMed  CAS  Google Scholar 

  • Chan CM, Hillman K, Moss S, Unwin RJ, Burnstock G (1998a) Putative cytolytic P2X7 receptor in diabetic rat kidney and its stable transfection in lymphocytes. Journal of the American Society of Nephrology 9:420A

    Google Scholar 

  • Chan CM, Unwin RJ, Bardini M, Oglesby IB, Ford APDW, Townsend-Nicholson A, Burnstock G (1998b) Localization of P2X1 purinoceptors by autoradiography and immunohistochemistry in rat kidneys. Am J Physiol 274: F799–F804

    Google Scholar 

  • Chan CM, Unwin RJ, Burnstock G (1998c) Variable co-localization of P2X1 and P2X2 receptors along the rat renal vasculature. Journal of the American Society of Nephrology 9:335A

    Google Scholar 

  • Chan CM, Unwin RJ, Burnstock G (1998d) Immunohistochemical localization of P2X5 and P2X6 receptors along the normal rat nephron. Journal of the American Society of Nephrology 9:420A

    Google Scholar 

  • Chen CC, Akopian AN, Sivilotti L, Colquhoun D, Burnstock G, Wood JN (1995) A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377:428–431

    PubMed  CAS  Google Scholar 

  • Choi KC, Lee J, Moon KH, Park KK, Kim SW, Kim NH (1993) Chronic caffeine ingestion exacerbates 2-kidney, l -clip hypertension and ameliorates deoxycorticosterone acetate-salt hypertension in rats. Nephron 65:619–622

    PubMed  CAS  Google Scholar 

  • Chou CC, Hook JB, Hsieh CP, Burns TD, Dabney JM (1971) Effects of radiopaque dyes on renal vascular resistance. J Lab Clin Med 78:705–712

    PubMed  CAS  Google Scholar 

  • Churchill PC (1982) Renal effects of 2-chloroadenosine and their antagonism by aminophylline in anesthetized rats. J Pharmacol Exp Ther 222:319–323

    PubMed  CAS  Google Scholar 

  • Churchill PC, Bidani A (1987) Renal effects of selective adenosine receptor agonists in anesthetized rats. Am J Physiol 252:F299–F303

    PubMed  CAS  Google Scholar 

  • Churchill PC, Churchill MC (1985) A1 and A2 adenosine receptor activation inhibits and stimulates renin secretion of rat renal cortical slices. J Pharmacol Exp Ther 232:589–594

    PubMed  CAS  Google Scholar 

  • Churchill PC, Ellis VR (1993a) Pharmacological characterization of the renovascular P2 purinergic receptors. J Pharmacol Exp Ther 265:334–338

    Google Scholar 

  • Churchill PC, Ellis VR (1993b) Purinergic P2Y receptors stimulate renin secretion by rat renal cortical slices. J Pharmacol Exp Ther 266:160–163

    Google Scholar 

  • Churchill PC, Bidani AK, Churchill MC, Prada J (1984) Renal effects of 2-chloroadenosine in the two-kidney goldblatt rat. J Pharmacol Exp Ther 230:302–306

    PubMed  CAS  Google Scholar 

  • Cook CB, Churchill PC (1984) Effects of renal denervation on the renal responses of anesthetized rats to cyclohexyladenosine. Can J Physiol Pharmacol 62:934–938

    PubMed  CAS  Google Scholar 

  • Coulson R, Johnson RA, Olsson RA, Cooper DR, Scheinman SJ (1991) Adenosine stimulates phosphate and glucose transport in opossum kidney epithelial cells. Am J Physiol 260:F921–F928

    PubMed  CAS  Google Scholar 

  • Coulson R, Proch PS, Olsson RA, Chalfant CE, Cooper DR (1996) Upregulated renal adenosine A1 receptors augment PKC and glucose transport but inhibit proliferation. Am J Physiol 270:F263–F274

    PubMed  CAS  Google Scholar 

  • Cox BF, Smits GJ (1996) Regional hemodynamic effects of purinergic P2 receptor subtype agonists in rats. J Pharmacol Exp Ther 277:1492–1500

    PubMed  CAS  Google Scholar 

  • Cronstein BN (1994) Adenosine, an endogenous anti-inflammatory agent. Journal of Applied Physiology 76:5–13

    PubMed  CAS  Google Scholar 

  • Culic O, Sabolic I, Zanic-Grubisic T (1990) The stepwise hydrolysis of adenine nucleotides by ectoenzymes of rat renal brush-border membranes. Biochimica et Biophysica Acta 1030:143–151

    PubMed  CAS  Google Scholar 

  • Dean RH (1985) Complications of renal revascularization. In Bernhard VM, Towne JB (eds) Complications of Vascular Surgery, Orlando: Grune & Stratton, Inc., pp 239–241

    Google Scholar 

  • Deray G, Branch RA, Herzer WA, Ohnishi A, Jackson EK (1987) Adenosine inhibits β-adrenoceptor but not DBcAMP-induced renin release. Am J Physiol 252:F46– F52

    PubMed  CAS  Google Scholar 

  • Deray G, Branch RA, Jackson EK (1989a) Methylxanthines augment the renin response to suprarenal-aortic constriction. Naunyn-Schmiedeberg’s Arch Pharmacol 339:690–696

    Google Scholar 

  • Deray G, Branch RA, Ohnishi A, Jackson EK (1989b) Adenosine inhibits reninre lease induced by suprarenal-aortic constriction and prostacyclin. Naunyn-Schmiedeberg’s Arch Pharmacol 339:590–595

    Google Scholar 

  • Deray G, Martinez F, Cacoub P, Baumelou B, Baumelou A, Jacobs C (1990a) A role for adenosine, calcium and ischemia in radiocontrast-induced intrarenal vasoconstriction. Am J Nephrol 10:316–322

    Google Scholar 

  • Deray G, Sabra R, Herzer WA, Jackson EK, Branch RA (1990b) Interaction between angiotensin II and adenosine in mediating the vasoconstrictor response to intrarenal hypertonic saline infusions in the dog. J Pharmacol Exp Ther 252:631–635

    Google Scholar 

  • Dinour D, Brezis M (1991) Effects of adenosine on intrarenal oxygenation. Am J Physiol 261:F787–F791

    PubMed  CAS  Google Scholar 

  • Drury AN, Szent-Gyorgyi A (1929) The physiological activity of adenine compounds with special reference to their action upon the mammalian heart. J Physiol Lond 68:213–237

    PubMed  CAS  Google Scholar 

  • Dubey RK, Gillespie DG, Jackson EK (1998) Cyclic AMP-adenosine pathway induces nitric oxide synthesis in aortic smooth muscle cells. Hypertension 31:296–302

    PubMed  CAS  Google Scholar 

  • Dubey RK, Mi Z, Gillespie DG, Jackson EK (1996) Cyclic AMP-adenosine pathway inhibits vascular smooth cell growth. Hypertension 28:765–771

    PubMed  CAS  Google Scholar 

  • Ecelbarger CA, Maeda Y, Gibson CC, Knepper MA (1994) Extracellular ATP increases intracellular calcium in rat terminal collecting duct via a nucleotide receptor. Am J Physiol 267:F998–1006

    PubMed  CAS  Google Scholar 

  • Edlund A, Ohlsén H, Sollevi A (1994) Renal effects of local infusion of adenosine in man. Clin Sci 87:143–149

    PubMed  CAS  Google Scholar 

  • Edwards RM, Spielman WS (1994) Adenosine A1 receptor-mediated inhibition of vasopressin action in inner medullary collecting duct. Am J Physiol 266:F791–F796

    PubMed  CAS  Google Scholar 

  • Eltze M, Ullrich B (1996) Characterization of vascular P2 purinoceptors in the rat isolated perfused kidney. Eur J Pharmacol 306:139–152

    PubMed  CAS  Google Scholar 

  • Erley CM, Duda SH, Schlepckow S, Koehler J, Huppert PE, Strohmaier WL, Bohle A, Risler T, Osswald H (1994) Adenosine antagonist theophylline prevents the reduction of glomerular filtration rate after contrast media application. Kidney Int 45:1425–1431

    PubMed  CAS  Google Scholar 

  • Erley CM, Heyne N, Burgert K, Langanke J, Risler T, Osswald H (1997) Prevention of radiocontrast- induced nephropathy by adenosine antagonists in rats with chronic nitric oxide deficiency. Journal of the American Society of Nephrology 8:1 125–1132

    PubMed  CAS  Google Scholar 

  • Erley CM, Heyne EN, Rossmeier S, Vogel T, Risler T, Osswald H (1998) Adenosine and extracellular volume in radiocontrast media-induced nephropathy. Kidney Int 54:S-192–S-194

    Google Scholar 

  • Firestein BL, Xing M, Hughes RJ, Corvera CU, Insel PA (1996) Heterogeneity of P2u- and P2y- purinergic receptor regulation of phospholipases in MDCK cells. Am J Physiol 271:F610–F618

    PubMed  CAS  Google Scholar 

  • Forrest JN Jr (1996) Cellular and molecular biology of chloride secretion in the shark rectal gland: Regulation by adenosine receptors. Kidney Int 4:1557–1562

    Google Scholar 

  • Franco M, Bell PD, Navar LG (1989) Effect of adenosine A1, analogue on tubuloglomerular feedback mechanism. Am J Physiol 257:F231–F236

    PubMed  CAS  Google Scholar 

  • Franco M, Bobadilla NA, Suárez J, Tapia E, Sánchez L, Herrera-Acosta J (1996) Participation of adenosine in the renal hemodynamic abnormalities of hypothyroidism. Am J Physiol 270:F254–F262

    PubMed  CAS  Google Scholar 

  • Fransen R, Koomans HA (1995) Adenosine and renal sodium handling: Direct natriuresis and renal nerve-mediated antinatriuresis. J Am Soc Nephrol 6:1491–1497

    PubMed  CAS  Google Scholar 

  • Freissmuth M, Hausleithner V, Tuisl E, Nanoff C, Schlitz W (1987) Glomeruli and microvessels of the rabbit kidney contain both A1- and A2-adenosine receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 335:438–444

    CAS  Google Scholar 

  • Friedlander G, Amiel C (1995) Extracellular nucleotides as modulators of renal tubular transport. Kid Int 47:1500–1506

    CAS  Google Scholar 

  • Friedrich F, Weiss H, Paulimichel M, Lang F (1989) Activation of potassium channels in renal epithelioid cells (MDCK) by extracellular ATP. Am J Physiol 256:Cl016–C1021

    Google Scholar 

  • Gaudio KM, Taylor MR, Chaudry IH, Kashgarian M, Siegel NJ (1982 Accelerated recovery of single nephron function by the postischemic infusion of ATP-MgCI2. Kidney International 22:13–20

    PubMed  CAS  Google Scholar 

  • Gellai M, Schreiner GF, Ruffolo RR Jr, Fletcher T, DeWolf R, Brooks DP (1998) CYT-124, a novel adenosine A1 receptor antagonist with unique diuretic activity. J Pharmacol Exp Ther 286:1191–1196

    PubMed  CAS  Google Scholar 

  • Gerkens, JF, Smith AJ (1985) Captopril and theophylline treatment on cyciosporineinduced nephrotoxicity in rats. Transplantation 40:213–214

    PubMed  CAS  Google Scholar 

  • Gerkens JF, Heidemann HT, Jackson EK, Branch RA (1983a) Aminophylline inhibits renal vasoconstriction produced by intrarenal hypertonic saline. J Pharmacol Exp Ther 225:611–615

    Google Scholar 

  • Gerkens JF, Heidemann HT, Jackson EK, Branch RA (1983b) Effect of aminophylline on amphotericin B nephrotoxicity in the dog. J Pharmacol Exp Ther 224:609–613

    Google Scholar 

  • Gleiter CH, Becker T, Wenzel J (1997a) Erythropoietin production in healthy volunteers subject ed to controlled hypobaric hypoxia: further evidence against a role for adenosine. Br J Clin Pharmacol 44:203–205

    Google Scholar 

  • Gleiter CH, Brause M, Delabar U, Zebski H, Eckardt K-U (1997b) Evidence against a major role of adenosine in oxygen-dependent regulation of erythropoietin in rats. Kidney Int 52:338–344

    Google Scholar 

  • Gleiter CH, Freudenthaler S, Delabar U, Eckardt KU, Mühlbauer B, Gundert-Remy U, Osswald H (1996) Erythropoietin production in healthy volunteers subjected to controlled haemorrhage: evidence against a major role for adenosine. Br J Clin Pharmacol 42:729–735

    PubMed  CAS  Google Scholar 

  • Gould J, Bowmer CJ, Yates MS (1995) Renal haemodynamic responses to adenosine in acute renal failure. Nephron 71:184–189

    PubMed  CAS  Google Scholar 

  • Gould J, Morton MJ, Sivaprasadarao A, Bowmer CJ, Yates MS (1997) Renal adenosine Al receptor binding characteristics and mRNA levels during the development of acute renal failure in the rat. Br J Pharmacol 120:947–953

    PubMed  CAS  Google Scholar 

  • Gouyon JB, Guignard JP (1988) Theophylline prevents the hypoxemia -induced renal hemodynamic changes in rabbits. Kid Int 33:1078–1083

    CAS  Google Scholar 

  • Guieu R, Dussol B, Devaux C, Sampol J, Brunet P, Rochat H, Bechis G, Berland YF (1998) Interactions between cyciosporine A and adenosine in kidney transplant recipients. Kidney Int 53:200–204

    PubMed  CAS  Google Scholar 

  • Hall JE, Granger JP (1986a) Adenosine alters glomerular filtration control by angiotensin II. Am J Physiol 250:F917–F923

    Google Scholar 

  • Hall JE, Granger JP (1986b) Renal hemodynamics and arterial pressure during chronic intrarenal adenosine infusion in conscious dogs. Am J Physiol 250:F32–F39

    Google Scholar 

  • Hayslett JP, Macala LJ, Smallwood JI, Kalghatgi L, Gasalla-Herraiz J, Isales C (1995) Adenosine stimulation of Na+ transport is mediated by an A1 receptor and a [Ca2+]i-dependent mechanism. Kid Int 47:1576–1584

    CAS  Google Scholar 

  • Heidemann HT, Bolten M, Inselmann G (1991) Effect of chronic theophylline administration on amphotericin B nephrotoxicity in rats. Nephron 59:294–298

    PubMed  CAS  Google Scholar 

  • Heidemann HT, Gerkens JF, Jackson EK, Branch RA (1983a) Effect of aminophylline on renal vasoconstriction produced by amphotericin B in the rat. NaunynSchmiedeberg’s Arch Pharmacol 324:148–152

    Google Scholar 

  • Heidemann HT, Gerkens JF, Jackson EK, Branch RA (1985) Attenuation of cisplatinurn-induced nephrotoxicity in the rat by high salt diet, furosemide and acetazolamide. Naunyn-Schmiedeberg’s Arch Pharmacol 329:201–205

    CAS  Google Scholar 

  • Heidemann HT, Gerkens JF, Spickard WA, Jackson EK, Branch RA (1983b) Amphotericin B nephrotoxicity in humans decreased by salt depletion. Am J Med 75:476–481

    Google Scholar 

  • Heidemann HT, Mülier S, Mertins L, Stepan G, Hoffmann K, Ohnhaus E (1989) Effect of aminophylline on cisplatin nephrotoxicity in the rat. Br J Pharmacol 97:313–318

    PubMed  CAS  Google Scholar 

  • Hoenderop JGJ, Hartog A, Willems PHGM, Bindels RJM (1998) Adenosinestimulated Ca2+ reabsorption is mediated by apical Al receptors in rabbit cortical collecting system. Am J Physiol 274:F736–F743

    PubMed  CAS  Google Scholar 

  • Holycross BJ, Jackson EK (1992) Effects of chronic treatment with caffeine on kidneys responses to angiotensin II. Eur J Pharmacol 219:361–367

    PubMed  CAS  Google Scholar 

  • Humes HD, Cieslinski DA (1991) Adenosine triphosphate stimulates thymidine incorporation but does not promote cell growth in primary cultures or renal proximal tubular cells. Renal Physiol Biochem 14:253–258

    PubMed  CAS  Google Scholar 

  • Huwiler A, Pfeilschifter J (1994) Stimulation by extracellular ATP and UTP of the mitogen-activated protein kinase cascade and proliferation of rat renal mesangial cells. Br J Pharmacol 113:1455–1463

    PubMed  CAS  Google Scholar 

  • Ilan Y, Dranitzki-Elhallel M, Rubinger D, Silver J, Popovitzer MM (1994) Erythrocytosis after renal transplantation. Transplantation 57:661–664

    PubMed  CAS  Google Scholar 

  • Inscho EW (1996) Purinoceptor-mediated regulation of the renal microvasculature 16:385–388

    CAS  Google Scholar 

  • Inscho EW, Carmines PK, Navar LG (1991) Juxtamedullary afferent arteriolar responses to P1 and P2 purinergic stimulation. Hypertension 17:1033–1037

    PubMed  CAS  Google Scholar 

  • Inscho EW, Cook AK, Mui V, Miller J (1998) Direct assessment of renal microvascular responses to P2-purinoceptor agonists. Am J Physiol 274:F718–F727

    PubMed  CAS  Google Scholar 

  • Inscho EW, Cook AK, Navar LG (1996) Pressure-mediated vasoconstriction of juxtamedullary afferent arterioles involves P2-purinoceptor activation. Am J Physiol 271:Fl077–F1085

    Google Scholar 

  • Inscho EW, LeBlanc EA, Pham BT, White SM, Imig JD (1999) Purinoceptor-mediated calcium signaling in preglomerular smooth muscle cells. Hypertension 33:195–200

    PubMed  CAS  Google Scholar 

  • Inscho EW, Mitchell KD, Navar LG (1994) Extracellular ATP in the regulation of renal microvascular function. FASEB J 8:319–328

    PubMed  CAS  Google Scholar 

  • Inscho EW, Ohishi K, Cook AK, Belott TP, Navar LG (1995) Calcium activation mechanisms in the renal microvascular response to extracellular ATP. Am J Physiol 268:F867–F884

    Google Scholar 

  • Inscho EW, Ohishi K, Navar LG (1992) Effect of ATP on pre- and postglomerular juxtamedullary microvasculature. Am J Physiol 263:F886–F893

    PubMed  CAS  Google Scholar 

  • Ishikawa I, Shikura N, Takada K (1993a) Amelioration of glycerol-induced acute renal failure in rats by an adenosine A1 receptor antagonist (FR-l13453). Renal Failure 15:1–5

    Google Scholar 

  • Ishikawa I, Shikura N, Takada K, Sato Y (1993b) Changes of adenosine levels in the carotid artery, renal vein and inferior vena cava after glycerol or mercury injection in the rat. Nephron 64:605–608

    Google Scholar 

  • Jackson EK (1991) Adenosine: A physiological brake on renin release. Annu Rev Pharmacol Toxicol 31:1–35

    PubMed  CAS  Google Scholar 

  • Jackson EK, Mi Z, Gillespie DG, Dubey RK (1997) Metabolism of cAMP to adenosine in the renal vasculature. J Pharmacol Exp Ther 283:177–182

    PubMed  CAS  Google Scholar 

  • Jackson EK, Mi Z, Herzer WA (1995) Studies on the mechanism by which adenosine receptor antagonists attenuate acute renal failure. In Belardinelli L, Pelleg A (eds) “Adenosine and Adenine Nucleotides: From Molecular Biology to Integrative Physiology,” Boston: Kluwer Acad Pub., pp 415–423

    Google Scholar 

  • Kaissling B, Spiess S, Rinne B, LeHir M (1993) Effects of anemia on morphology of rat renal cortex. Am J Physiol 264:F608–F617

    PubMed  CAS  Google Scholar 

  • Katholi RE, Taylor GJ, McCann WP, Woods WT Jr, Womach KA, McCoy CD, Katholi CR, Moses HW, Mishkel GJ, Lucore CL, Holloway RM, Miller BD, Woodruff RC, Dove JT, Mikell FL, Schneider JA (1995) Nephrotoxicity from contrast media: attenuation with theophylline. Radiology 195:17–22

    PubMed  CAS  Google Scholar 

  • Katzberg RW, Schulman G, Meggs LG, Caldicott WJH, Damieno MM, Hollenberg NK (1983) Mechanism of renal response to contrast media in dogs: decrease in renal function due to hypertonicity. Invest Radiol 18:74–80

    PubMed  CAS  Google Scholar 

  • Kellett R, Bowmer CJ, Collis MG, Yates MS (1989) Amelioration of glycerol-induced acute renal failure in the rat with 8-cyclopentyl-l,3-dipropylxanthine. Br J Pharmacol 98:1066–1074

    PubMed  CAS  Google Scholar 

  • Kelley GG, Poeschla EM, Barron HV, Forrest IN Jr. (1990) Al adenosine receptors inhibit chloride transport in the shark rectal gland: Dissociation of inhibition and cyclic AMP. J Clin Invest 85:1629–1636

    PubMed  CAS  Google Scholar 

  • Kishore BK, Chou C-L, Knepper MA (1995) Extracellular nucleotide receptor inhibits AVP-stimulated water permeability in inner medullary collecting duct. Am J Physiol 269:F863–F869

    PubMed  CAS  Google Scholar 

  • Kishore BK, Ginns SN, Nielsen S, Knepper MA (1998) Localization of P2Y2-purinoceptor in rat inner medulla. Journal of the American Society of Nephrology 9:425A

    Google Scholar 

  • Knight RJ, Bowmer CJ, Yates MS (1993a) Effect of the selective A1 adenosine antagonist 8-cyclopentyl-l,3-dipropylxanthine on acute renal dysfunction induced by Escherichia Coli endotoxin in rats. J Pharm Pharmacol 45:979–984

    Google Scholar 

  • Knight RJ, Bowmer CJ, Yates MS (1993b) The diuretic action of 8-cyclopentyl-1,3dipropylxanthine, a selective A, adenosine receptor antagonist. Br J Pharmacol 109:271–277

    Google Scholar 

  • Knight RJ, Collis MG, Yates MS, Bowmer CJ (1991) Amelioration of cisplatin-induced acute renal failure with 8-cyclopentyl-l,3-dipropylxanthine. Br J Pharmacol 104:1062–1068

    PubMed  CAS  Google Scholar 

  • Kohno M, Murakawa K, Horio T, Yokokawa K, Yasunari K, Fukui T, Takeda T (1991) Plasma immunoreactive endothelin-l in experimental malignant hypertension. Hypertension 18:92–100

    Google Scholar 

  • Kost CK Jr, Herzer WA, Mi Z, Jackson EK (1998) Diuretic/natriuretic response to A1-receptor blockade in normotensive and hypertensive rats: Role of Gi-proteins, J Am Soc of Nephrol 9:310A

    Google Scholar 

  • Kost CK Jr, Li P, Pfeifer CA, Jackson (1994) Telemetric blood pressure monitoring in benign 2-kidney, 1-clip renovascular hypertension: Effect of chronic caffeine ingestion. J Pharmacol Exp Ther 270:1063–1070

    PubMed  CAS  Google Scholar 

  • Kreisberg MS, Silldorff EP, Pallone TL (1997) Localization of adenosine-receptor subtype mRNA in rat outer medullary descending vasa recta by RT-PCR. Am J Physiol 272:H1231–H1238

    PubMed  CAS  Google Scholar 

  • Kuan CJ, Branch RA, Jackson EK (1990a) Effect of an adenosine receptor antagonist on acute amphotericin B nephrotoxicity. Eur J Pharmacol 178:285–291

    Google Scholar 

  • Kuan CJ, Herzer WA, Jackson EK (1993) Cardiovascular and renal effects of blocking A1 adenosine receptors. J Cardiovasc Pharm 21:822–828

    CAS  Google Scholar 

  • Kuan CJ, Wells JN, Jackson EK (1989) Endogenous adenosine restrains renin release during sodium restriction. J Pharmacol Exp Ther 249:110–116

    PubMed  CAS  Google Scholar 

  • Kuan CJ, Wells, JN, Jackson EK (1990b) Endogenous adenosine restrains renin release in conscious rats. Circ Res 66:637–646

    Google Scholar 

  • Lang F, Plöckinger B, Häussinger D, Paulmichl, M (1988) Effects of extracellular nucleotides on electrical properties of subconfluent Madin Darby canine kidney cells. Biochim Biophys Acta 943:471–476

    PubMed  CAS  Google Scholar 

  • Lang MA, Preston AS, Handler JS, Forrest IN Jr. (1985) Adenosine stimulates sodium transport in kidney A6 epithelia in culture. Am J Physiol 249:C33Q–C336

    Google Scholar 

  • Langård O, Holdaas H, Eide I, Kiil F (1983) Conditions for augmentation of renin release by theophylline. Scand J Clin Lab Invest 43:9–14

    PubMed  Google Scholar 

  • Lederer ED, McLeish KR (1995) P2 purinoceptor stimulation attenuates PTH inhibition of phosphate uptake by a G protein-dependent mechanism. Am J Physiol 269:F309–F316

    PubMed  CAS  Google Scholar 

  • Le Hir M, Kaissling B (1993) Distribution and regulation of renal ecto-5′-nucleotidase: implications for physiological functions of adenosine. Am J Physiol 264:F377–F387

    PubMed  Google Scholar 

  • Levens N, Beil M, Jarvis M (1991a) Renal actions of a new adenosine agonist, CGS 21680A selective for the A2, receptor. J Pharmacol Exp Ther 257:1005–1012

    Google Scholar 

  • Levens N, Beil M, Schulz R (1991b) Intrarenal actions of the new adenosine agonist CGS 21680A, selective for the A2 receptor. J Pharmacol Exp Ther 257:1013–1019

    Google Scholar 

  • LeVier DG, McCoy DE, Spielman WS (1992) Functional localization of adenosine receptor-mediated pathways in the LLC-PK1 renal cell line. Am J Physiol 263:C729–C735

    PubMed  CAS  Google Scholar 

  • Lewis EJ, Hunsicker LG, Bain RP, Rohde RD (1993) The effect of angiotensinconverting- enzyme inhibition on diabetic nephropathy. The collaborative study group. N Eng J Med 329:1456–1462

    CAS  Google Scholar 

  • Lin JJ, Churchill PC, Bidani AK (1986) Effect of theophylline on the initiation phase of postischemic acute renal failure in rats. J Lab Clin Med 108:150–154

    PubMed  CAS  Google Scholar 

  • Lin JJ, Churchill PC, Bidani AK (1987) The effect of dipyridamole on the initiation phase of post ischemic acute renal failure in rats. Can J Physiol Pharmacol 65:1491–1495

    PubMed  CAS  Google Scholar 

  • Lin JJ, Churchill PC, Bidani AK (1988) Theophylline in rats during maintenance phase of post- ischemic acute renal failure. Kid Int 33:24–28

    CAS  Google Scholar 

  • Llanos A, Cieza J, Bernardo J, Echevarria J, Biaggioni I, Sabra R, Branch RA (1991) Effect of salt supplementation on amphotericin B nephrotoxicity. Kid Int 40:302–308

    CAS  Google Scholar 

  • Lorez IN, Weihprecht H, He XR, Skøtt O, Briggs JP, Schnermann J (1993) Effects of adenosine and angiotensin on macula densa-stimulated renin secretion. Am J Physiol 265:F187–F194

    Google Scholar 

  • Ma H, Ling BN (1996) Luminal adenosine receptors regulate amiloride-sensitive Na+ channels in A6 distal nephron cells. Am J Physiol 270:F798–F805

    PubMed  CAS  Google Scholar 

  • Majid DSA, Navar LG (1992) Suppression of blood flow autoregulation plateau during nitric oxide blockade in canine kidney. Am J Physiol 262:F40–F46

    PubMed  CAS  Google Scholar 

  • Mandel LJ, Takano T, Soltoff SP, Murdaugh S (1988) Mechanisms whereby exogenous adenine nucleotides improve rabbit renal proximal function during and after anoxia. J Clin Invest 81:1255–1264

    PubMed  CAS  Google Scholar 

  • Martinez F, Franco M, Quintana A, Herrera-Acosta J (1997) Sodium-dependent adenosine transport is diminished in brush border membrane vesicles from hypothyroid rat kidney. Pflugers Arch — Eur J Physiol 433:269–275

    CAS  Google Scholar 

  • Mi Z, Jackson EK (1998) Evidence for an endogenous cAMP-adenosine pathway in the rat kidney. J Pharmacol Exp Ther 287:926–930

    PubMed  CAS  Google Scholar 

  • Mi Z, Jackson EK (1995) Metabolism of exogenous cyclicAMP to adenosine in the rat kidney. J Pharmacol Exp Ther 273:728–733

    PubMed  CAS  Google Scholar 

  • Mi Z, Herzer WA, Zhang Y, Jackson EK (1994) 3-isobutyl-1-methylxanthine decreases renal cortical interstitial levels of adenosine and inosine. Life Sci 54:PL277–PL282

    CAS  Google Scholar 

  • Middleton JP, Mangel AW, Basavappa S, Fitz JG (1993) Nucleotide receptors regulate membrane ion transport in renal epithelial cells. Am J Physiol 264:F867–F873

    PubMed  CAS  Google Scholar 

  • Miller WL, Thomas RA, Berne RM, Rubio R (1978) Adenosine production in the ischemic kidney. Circ Res 43:390–397

    PubMed  CAS  Google Scholar 

  • Mitchell KD, Navar LG (1993) Modulation of tubuloglomerular feedback responses by extracellular ATP. Am J Physiol 264:F458–F466

    PubMed  CAS  Google Scholar 

  • Miyamoto M, Yagil Y, Larson T, Robertson C, Jamison RL (1988) Effects of intrarenal adenosine on renal function and medullary blood flow in the rat. Am J Physiol 255:F1230–F1234

    PubMed  CAS  Google Scholar 

  • Mizumoto H, Karasawa A, Kubo K (1993) Diuretic and renal protective effects of 8-(noradamantan-3- yl)-1,3-dipropylxanthine (KW-3902), a novel adenosine A1-receptor antagonist, via pertussis toxin insensitive mechanism. J Pharmacol Exp Ther 266:200–266

    PubMed  CAS  Google Scholar 

  • Mori M, Nishizaki T, Kawahara K, Okada Y (1996) ATP-activated cation conductance in a Xenopus renal epithelial cell line. J Physiol 491:281–290

    PubMed  CAS  Google Scholar 

  • Mosqueda-Garcia R, Killian TJ, Haile V, Tseng CJ, Robertson RM, Robertson D (1990) Effects of caffeine on plasma catecholamines and muscle sympathetic nerve activity in man. Circulation 82:III-335

    Google Scholar 

  • Mosqueda-Garcia R, Tseng CJ, Appalsamy M, Robertson D (1989) Modulatory effects of adenosine on baroreflex activation in the brainstem of normotensive rats. Eur J Pharmacol 174:119–122

    PubMed  CAS  Google Scholar 

  • Moyer BD, McCoy DE, Lee B, Kizer N, Stanton BA (1995) Adenosine inhibits arginine vasopressin stimulated chloride secretion in a mouse IMCD cell line (mIMCD-K2). Am J Physiol 269:F884–F891

    PubMed  CAS  Google Scholar 

  • Munger KA, Jackson EK (1994) Effects of selective A1, receptor blockade on glomerular hemodynamics: involvement of renin-angiotensin system. Am J Physiol 267:F783–F790

    PubMed  CAS  Google Scholar 

  • Murray RD, Churchill PC (1984) Effects of adenosine receptor agonists in the isolated, perfused rat kidney. Am J Physiol 247:H343–H348

    PubMed  CAS  Google Scholar 

  • Murray RD, Churchill PC (1985) Concentration dependency of the renal vascular and renin secretory responses to adenosine receptor agonists. J Pharmacol Exp Ther 232:189–193

    PubMed  CAS  Google Scholar 

  • Nagashima K, Kusaka H, Karasawa A (1995) Protective effects of KW-3902, an adenosine A1-receptor antagonist, against cisplatin-induced acute renal failure in rats. Jpn J Pharmacol 67:349–357

    PubMed  CAS  Google Scholar 

  • Nagashima K, Kusaka H, Sato K, Karasawa A (1994) Effects of KW-3902, a novel adenosine A1-receptor antagonist, on cephaloridine-induced acute renal failure in rats. Jpn J Pharmacol 64:9–17

    PubMed  CAS  Google Scholar 

  • Nagashima K, Yamagata T, Ushiki J, Yamaguchi K, Nishiyama A, Abe Y, Karasawa A (1998) Role for renal interstitial adenosine in the contrast medium-induced renal dysfunction. J Am Soc Nephropath 9:428A

    Google Scholar 

  • Nakashima J, Brookins J, Beckman B, Fisher JW (1991) Increased erythropoietin secretion in human hepatoma cells by N6-cyclohexyladenosine. Am J Physiol 261:C455–C460

    PubMed  CAS  Google Scholar 

  • Nakashima J, Brookins J, Ohigashi T, Fisher JW (1994) Adenosine A2 receptor modulation of erythropoietin secretion in hepatocellular carcinoma cells. Life Sci 54:109–117

    PubMed  CAS  Google Scholar 

  • Nakashima J, Ohigashi T, Brookins JW, Bechman BS, Agrawal KC, Fisher JW (1993a) Effects of 5′-N ethylcarboxamideadenosine (NECA) on erythropoietin production. Kid Int 44:734–740

    Google Scholar 

  • Nakashima J, Tazak H, Fisher JW (1993b) Increase in erythropoietin secretion mediated by adenosine A2 receptors. Hum Cell 6:36–46

    Google Scholar 

  • Nanoff C, Freissmuth M, Tuisl E, Schutz W (1990) P2-, but not Pj-purinoreceptors mediate formation of 1,4,5-inositol triphosphate and its metabolites via a pertussis toxin-insensitive pathway in the rat renal cortex. Br J Pharmacol 100:62–68

    Google Scholar 

  • Navar LG, Inscho EW, Majid DSA, lmig JD, Harrison-Bernard LM, Mitchell KD (1996) Paracrine regulation of the renal microcirculation. Physiological Reviews 76:425–536

    PubMed  CAS  Google Scholar 

  • Needleman P, Minkes MS, Douglas JR (1970) Stimulation of prostaglandin biosynthesis by adenine nucleotides. Profile of prostaglandin release by perfused organs. Circ Res 34:455–460

    Google Scholar 

  • Nies AS, Beckmann ML, Gerber JG (1991) Contrasting effects of changes in salt balance on the renovascular response to Aj-adenosine receptor stimulation in vivo and in vitro in the rat. J Pharmacol Exp Ther 256:542–546

    PubMed  CAS  Google Scholar 

  • Nolte D, Lorenzen A, Lehr HA, Zimmer FJ, Klotz KN, Messmer K (1992) Reduction of postischemic leukocyte-endothelium interaction by adenosine via A2 receptor. Naunyn-Schmiedebergs Arch Pharmacol 346:234–237

    PubMed  CAS  Google Scholar 

  • Nomura H, Nagashima K, Kusaka H, Karasawa A (1995) Antihypertensive effects of KW-3902, an adenosine A1-receptor antagonist, in Dahl salt-sensitive rats. Jpn J Pharmacol 68:389–396

    PubMed  CAS  Google Scholar 

  • Nosaka K, Takahashi T, Hishi T, Imaki H, Suzuki T, Suzuki K, Kurokawa K, Endou H (1997) An adenosine deaminase inhibitor prevents puromycin aminonucleoside nephrotoxicity. Free Radic BioI Med 22:597–605

    CAS  Google Scholar 

  • Oberbauer R, Schreiner GF, Meyer TW (1998) Natriuretic effect of adenosine A1-receptor blockade in rats. Nephrol Dial Transplant 13:900–903

    PubMed  CAS  Google Scholar 

  • Ohigashi T, Brookins J, Fisher JW (1993) Adenosine A1 receptors and erythropoietin production. Am J Physiol 265:C934–C938

    PubMed  CAS  Google Scholar 

  • Ohnishi A, Branch RA, Jackson K, Hamilton R, Biaggioni I, Deray G, Jackson EK (1986) Chronic caffeine administration exacerbates renovascular, but not genetic, hypertension in rats. J Clin Invest 73:1045–1050

    Google Scholar 

  • Ohnishi A, Ohnishi T, Stevenhead W, Robinson RD, Glick A, O’Day DM, Sabra R, Jackson EK, Branch RA (1989) Sodium status influences chronic amphotericin B nephrotoxicity in rats. Antimicrob Agents Chemother 33:1222–1227

    PubMed  CAS  Google Scholar 

  • Okusa MD, Linden J, Macdonald TL, Huang L, Mangrum AJ (1998) Activation of A2A-adenosine receptors (A2A-ARs) reduces polymorphoneutrophil (PMN) infiltration and protects kidneys from ischemia- reperfusion (I/R) injury in the rat. J Am Soc Nephrol 9:583A

    Google Scholar 

  • Osswald H (1975) Renal effects of adenosine and their inhibition by theophylline in dogs. Naunyn- Schmiedeberg’s Arch Pharmacol 288:79–86

    CAS  Google Scholar 

  • Osswald H, Hermes H, Nabakowski G (1982) Role of adenosine in signal transmission of tubuloglomerular feedback. Kidney Int 22:S136–S142

    Google Scholar 

  • Osswald H, Nabakowski G, Hermes H (1980) Adenosine as a possible mediator of metabolic control of glomerular filtration rate. Int J Biochem 12:263–267

    PubMed  CAS  Google Scholar 

  • Osswald H, Schmitz HJ, Heidenreich O (1975) Adenosine response of the rat kidney after saline loading, sodium restriction and hemorrhage. Pflügers Arch 357: 323–333

    PubMed  CAS  Google Scholar 

  • Osswald H, Schmitz HJ, Kemper R (1977) Tissue content of adenosine, inosine and hypoxanthine in the rat kidney after ischemia and postischemic recirculation. Pflügers Arch 371:45–49

    PubMed  CAS  Google Scholar 

  • Osswald H, Schmitz HJ, Kemper R (1978a) Renal action of ade nosine: Effect on ren in secre tion in the rat. Naun yn-Schmiedeberg’s Arch Pharm acol 303:95–99

    Google Scholar 

  • Osswald H, Spielman WS, Knox FG (1978b) Mechanism of adenosine-mediated decreases in glomerular filtration rate in dogs. Circ Res 43:465–469

    Google Scholar 

  • Osswald H, Vallon V, Mühlbauer B (1996) Role of adenosine in tubuloglomerular feedback and acute renal failur e. Journal of Autonomic Pharm acology 16:377–380

    CAS  Google Scholar 

  • Palacios JM, Fastbom J, Wiede rhold KH, Probst A (1987) Visualization of adenosine A1 receptors in the human and the guinea -pig kidney. Eur J Pharmacol 138:273–276

    PubMed  CAS  Google Scholar 

  • Paller MS, Schnaith EJ, Rosenberg ME (1998) Purinergic receptors mediate cell pro-liferation and enhanced recovery from renal ischemia by adenosine triphosphate. J Lab Clin Med 131:174–183

    PubMed  CAS  Google Scholar 

  • Panjehshahin MR, Chahil RS, Collis MG, Bowmer CJ, Yates MS (1991a) The effect of 8-cyclopentyl- I,3-dipropylxanthine on the development of cyclosporin-induced acute renal failure. J Pharm Pharmacol 43:525–528

    Google Scholar 

  • Panjehshahin MR, Munsey TS, Collis MG, Bowmer CJ, Yates MS (1991b) Further characterization of the protective effect of 8-cyclopentyl-1,3-dipropylxanthine on glycero l-induced acute renal failure in the rat. J Pharm Pharmacol 44: 109–113

    Google Scholar 

  • Paul S, Jackson EK, Robertson D, Branch RA, Biaggioni I (1989) Caffeine potentiates the renin response to furosemide in rats. Evidence for a regulatory role of endogenous adenosine. J Pharmacol Exp Ther 251:183–187

    PubMed  CAS  Google Scholar 

  • Paul P, Rothmann SA, Meagher RC (1988) Modulation of erythropoietin production by adenosine. J Lab Clin Med 112:168–173

    PubMed  CAS  Google Scholar 

  • Paulmichl M, Lang F (1988) Enhancement of intracellular calcium concentration by extracellular ATP and UTP in Madin Darby canine kidney cells. Biochem Biophys Res Commun 156:1139–1143

    PubMed  CAS  Google Scholar 

  • Pawelczyk T, Bizon D, Angielski S (1992) The distribution of enzymes involved in purine metabolism in rat kidney. Biochim Biophys Acta 1116:309–314

    PubMed  CAS  Google Scholar 

  • Pawlowska D, Granger JP, Knox FG (1987) Effects of adenosine infusion into renal interstitium on renal hemodynamics. Am J Physiol 252:F678– F682

    PubMed  CAS  Google Scholar 

  • Peart WS, Quesada T, Tenyl I (1975) The effects of cyclic ade nosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate and theophylline on renin secretion in the isolated per fused kidney of the rat. Br J Pharmacol 54:55–60

    PubMed  CAS  Google Scholar 

  • Pfeifer CA, Suzuki F, Jackson EK (1995) Selective A1 receptor antagonism augments β-adrenergic-induced renin release in vivo. Am J Physiol 269 (4 Pt 2):F469– F479

    Google Scholar 

  • Pfeilschifter J (1990a) Comparison of extracellular ATP and UTP signalling in rat renal mesangial cells. Biochem J 272:469–472

    Google Scholar 

  • Pfeilschifter J (1990b) Extracellular ATP stimulates polyphosphoinositide hydrolysis and prostaglandin synthesis in the renal mesangial cells. Cell Signalling 2:129–138

    Google Scholar 

  • Pfister JR, Belardinelli L, Lee G, Lum RT, Milner P, Stanley WC, Linden J, Baker SP, Schreiner G (1997) Synthesis and biological evaluation of the enantiomers of the potent and selective A1-adenosine antagonist 1,3-dipropyl -8-[2-(5,6epoxynorbonyl)]-xanthine. J Med Chern 40:1773–1778

    CAS  Google Scholar 

  • Pflueger AC, Berndt TJ, Knox FG (1998) Effect of renal interstitial adenosine infusion on phosphate excretion in diabetes mellitus rats. Am J Physiol 274:R1228–R1235

    PubMed  CAS  Google Scholar 

  • Post SR, Jacobson JP, Insel PA (1996) P2 purinergic receptor agonists enhance cAMP production in Madin-Darby canine kidney epithelial cells via an autocrine/paracrine mechanism. J Bioi Chem 271: 2029–2032

    CAS  Google Scholar 

  • Potier M, Aparicio M, Cambar J (1997) Protective effect of three xanthine derivatives (theophylline, caffeine and pentoxifylline) against the cyclosporin A-induced glomerular contraction in isolated glomeruli and cultured mesangial cells. Nephron 77:427–434

    PubMed  CAS  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  • Ramos-Salazar A, Baines AD (1986) Role of 5′-nucleotidase in adenosine-mediated renal vasoconstriction during hypoxia. J Pharmacol Exp Ther 236:494–499

    PubMed  CAS  Google Scholar 

  • Reid IA, Stockigt JR, Goldfien A, Ganong WF (1972) Stimulation of renin secretion in dogs by theophylline. Eur J Pharmacol 17:325–332

    PubMed  CAS  Google Scholar 

  • Rossi NF, Churchill PC, Churchill MC (1987a) Pertussis toxin reverses adenosine receptor-mediated inhibition of renin secretion in rat renal cortical slices. Life Sci 40:481–487

    Google Scholar 

  • Rossi NF, Churchill PC, Jacobson KA, Leahy AE (1987b) Further characterization of the renovascular effects of N6-cyclohexyladenosine in the isolated perfused rat kidney. J Pharmacol Exp Ther 240:911–915

    Google Scholar 

  • Rossi N, Ellis V, Kontry T, Gunther S, Churchill P, Bidani A (1990) The role of adenosine in HgCl2- induced acute renal failure in rats. Am J Physiol 258:F1554–F1560

    PubMed  CAS  Google Scholar 

  • Rounds S, Hsieh L, Agarwal KC (1994) Effects of endotoxin injury on endothelial cell adenosine metabolism. J Lab Clin Med 123:309–317

    PubMed  CAS  Google Scholar 

  • Rouse D, Leite M, Suki WN (1994) ATP inhibits the hydrosmotic effect of AVP in rabbit CCT: evidence for a nucleotide P2u receptor. Am J Physiol 267:F289–F295

    PubMed  CAS  Google Scholar 

  • Ruggenenti P, Remuzzi G (1997) Angiotensin-converting enzyme inhibitor therapy for non-diabetic progressive renal disease. Curr Opin Nephrol Hypertens 6:489–495

    PubMed  CAS  Google Scholar 

  • Rump LC, Bohmann C, Schwertfeger E, Krumme B, von Kügelgen I, Schollmeyer P (1996) Extracellular ATP in the human kidney: mode of release and vascular effects. J Auton Pharmacol 16:371–375

    PubMed  CAS  Google Scholar 

  • Rump LC, Oberhauser V, von Kügelgen I (1998) Purinoceptors mediate renal vasodilation by nitric oxide dependent and independent mechanisms. Kidney Int 54:473–481

    PubMed  CAS  Google Scholar 

  • Sakai K, Akima M, Nabata H (1979) A possible purinergic mechanism for reactive ischemia in isolated, cross-circulated rat kidney. Jpn J Pharmacol 29:235–242

    PubMed  CAS  Google Scholar 

  • Schnermann J, Weihprecht H, Briggs JP (1990) Inhibition of tubuloglomerular feed-back during adenosine1, receptor blockade. Am J Physiol 258:F553–F561

    PubMed  CAS  Google Scholar 

  • Schulze-Lohoff E, Zanner S, Ogilvie A, Sterzel RB (1992) Extracellular ATP stimulates proliferation of cultured mesangial cells via P2-purinergic receptors. Am J Physiol 263:F374–F383

    PubMed  CAS  Google Scholar 

  • Schulze-Lohoff E, Hugo C, Rost S, Arnold S, Gruber A, Brüne B, Sterzel RB (1998) Extracellular ATP causes apoptosis and necrosis of cultured mesangial cells via P2Z/P2X7 receptors. Am J Physiol 275:F962–F971

    PubMed  CAS  Google Scholar 

  • Schwartz DD, Malik KU (1989) Renal periarterial nerve-stimulation-induced vasoconstriction at low frequencies is primarily due to release of a purinergic transmitter in the rat. J Pharmacol Exp Ther 250:764–771

    PubMed  CAS  Google Scholar 

  • Schwiebert EM, Karlson KH, Friedman PA, Dietl P, Spielman WS, Stanton BA (1992) Adenosine regulates a chloride channel via protein kinase C and a G protein in a rabbit cortical collecting duct cell line. J Clin Invest 89:834–841

    PubMed  CAS  Google Scholar 

  • Scislo TJ, Augustyniak RA, Barraco RA, Woodbury DJ, O’Leary DS (1997) Activation of P2x-purinoceptors in the nucleus tractus solitarius elicits differential inhibition of lumbar and renal sympathetic nerve activity. J Auton Nerv Sys 62:103–110

    CAS  Google Scholar 

  • Scislo TJ, O’Leary DS (1998) Activation of A2a adenosine receptors in the nucleus tractus solitarius inhibits renal but not lumbar sympathetic nerve activity. J Auton Nerv Sys 68:145–152

    CAS  Google Scholar 

  • Sehic E, Ruan Y, Malik KU (1994) Attenuation by α,β-methylenadenosine-5′-triphosphate of periarterial nerve stimulation-induced renal vasoconstriction is not due to desensitization of purinergic receptors. J Pharmacol Exp Ther 271:983–992

    PubMed  CAS  Google Scholar 

  • Shimada J, Suzuki F, Nonaka H, Karasawa A, Mizumoto H, Ohno T, Kubo K, Ishii A (1991) 8-(Dicyclopropylmethyl)-1,3-dipropylxanthine: a potent and selective adenosine A1 antagonist with renal protective and diuretic activities. J Med Chern 34:466–469

    CAS  Google Scholar 

  • Siegel NJ, Avison MJ, Reilly HF, Alger JR, Shulman RG (1983) Enhanced recovery of renal ATP with postischemic infusion of ATP-MgCl2 determined by 31P-NMR. Am J Physiol 245:F530–534

    PubMed  CAS  Google Scholar 

  • Siegel NJ, Glazier WB, Chaudry IH, Gaudio KM, Lytton B, Baue AE, Kashgarian M (1980) Enhanced recovery from acute renal failure by the postischemic infusion of adenine nucleotides and magnesium chloride in rats. Kidney Int 17:338–349

    PubMed  CAS  Google Scholar 

  • Silldorff EP, Kreisberg MS, Pallone TL (1996) Adenosine modulates vasomotor tone in outer medullary descending vasa recta of the rat. J Clin Invest 98:18–23

    PubMed  CAS  Google Scholar 

  • Simmons NL (1981) Identification of a purine (P2) receptor linked to ion transport in cultured renal (MDCK) epithelium. Br J Pharmacol 73:379–384

    PubMed  CAS  Google Scholar 

  • Siragy HM, Linden J (1996) Sodium intake markedly alters renal interstitial fluid adenosine. Hypertension 27:404–407

    PubMed  CAS  Google Scholar 

  • Skøtt O, Baumbach L (1985) Effects of adenosine on renin release from isolated rat glomeruli and kidney slices. Pfltigers Arch 404:232–237

    Google Scholar 

  • Smits P, Horman H, Thien T, Houben H, and Van’t Laar A (1983) Hemodynamic and humoral effects of coffee after beta-selective and nonselective beta-blockade. Clin Pharmacol Ther 34:153–158

    PubMed  CAS  Google Scholar 

  • Smits P, Pieters G, Thien T (1986) The role of epinephrine in the circulatory effect of coffee. Clin Pharmacol Ther 40:431–437

    PubMed  CAS  Google Scholar 

  • Spielman WS (1984) Antagonistic effect of theophylline on the adenosine-induced decrease in renin release. Am J Physiol 247:F246–F251

    PubMed  CAS  Google Scholar 

  • Spielman WS, Osswald H (1979) Blockade of postocclusive renal vasoconstriction by angiotensin II antagonist: evidence for an angiotensin-adenosine interaction. Am J Physiol 237:F463–F467

    PubMed  CAS  Google Scholar 

  • Spielman WS, Thompson CI (1982) A proposed role for adenosine in the regulation of renal hemodynamics and renin release. Am J Physiol 242:F423–F435

    PubMed  CAS  Google Scholar 

  • Spielman WS, Britton SL, Fiken-Olsen MJ (1980) Effect of adenosine on the distribution of renal blood flow in dogs. Circ Res 46:449–456

    PubMed  CAS  Google Scholar 

  • Spielman WS, Klotz KN, Arend LJ, Olson BA, LeVier DG, Schwabe U (1992) Characterization of adenosine A1, receptor in a cell line (28A) derived from rabbit collecting tubule. Am J Physiol 263:C502–C508

    PubMed  CAS  Google Scholar 

  • Stromski ME, Cooper K, Thulin G, Gaudio KM, Siegel NJ, Shulman RG (1986) Chemical and functional correlates of postischemic renal ATP levels. Proc Natl Acad Sci USA 83:6142–6145

    PubMed  CAS  Google Scholar 

  • Suzuki F (1992) KW-3902. Drugs Future 17:876–878

    Google Scholar 

  • Suzuki F, Shimada J, Mizumoto H, Karasawa A, Kubo K, Nonaka H, Ishii A, Kawakita T (1992) Adenosine A1, antagonists. 2. Structure-activity relationships on diuretic activities and protective effects against acute renal failure. J Med Chern 35:3066–3075

    CAS  Google Scholar 

  • Svensson JO, Jonzon B (1990) Determination of adenosine and cyclic adenosine monophosphate in urine using solid-phase extraction and high-performance liquid chromatography with fluorimetric detection. J Chromatography 529:437–441

    CAS  Google Scholar 

  • Tagawa H, Vander AJ (1970) Effects of adenosine compounds on renal function and renin secretion in dogs. Circ Res 26:327–338

    PubMed  CAS  Google Scholar 

  • Takano T, Soltoff SP, Murdaugh S, Mandel LJ (1985) Intracellular respiratory dysfunction and cell injury in short-term anoxia of rabbit renal proximal tubules. J Clin Invest 76:2377–2384

    PubMed  CAS  Google Scholar 

  • Takeda M, Yoshitomi K, Imai M (1993) Regulation of Na+-3HCO- 3 cotransport in rabbit proximal convoluted tubule via adenosine A1, receptor. Am J Physiol 265:F511–F519

    PubMed  CAS  Google Scholar 

  • Tan CC, Ratcliff PJ (1992) Rapid oxygen-dependent changes in erythropoietin mRNA in perfused rat kidneys: Evidence against mediation by cAMP. Kidney Int 41:1581–1587

    PubMed  CAS  Google Scholar 

  • Terai T, Kita Y, Kusunoki T, Ando T, Shimazaki T, Deguchi Y, Akahane A, Shiokawa Y, Yoshida K (1990) The renal effects of FR-113453, a potent non-xanthine adenosine antagonist. Eur J Pharmacol 183:1057–1058

    Google Scholar 

  • Thompson CI, Sparks HV, Spielman WS (1985) Renal handling and production of plasma and urinary adenosine. Am J Physiol 248:F545–F551

    PubMed  CAS  Google Scholar 

  • Thomson SC, Blantz RC, Vallon V (1998) Adenosine (ADO) generated by ecto-5′ nucleotidase (ecto 5NT) modulates macula densa control of glomerular filtration. J Am Soc Nephrol 9:348A

    Google Scholar 

  • Tofovic SP, Branch KR, Oliver RD, Magee WD, Jackson EK (1991) Caffeine potentiates vasodilator induced renin release. J Pharmacol Exp Ther 256:850–860

    PubMed  CAS  Google Scholar 

  • Tofovic SP, Jackson EK (2000) Effects of long-term caffeine consumption on renal function in spontaneously hypertensive heart failure prone rats. J Card iovasc Pharmacol 33:360–366

    Google Scholar 

  • Tofovic SP, Kusaka H, Pfeifer CA, Jackson EK (1996) Central effects of caffeine on renal renin secretion and norepinephrine spillover. J Cardiovasc Pharmacol 28:302–313

    PubMed  CAS  Google Scholar 

  • Toya Y, Umemura S, Iwamoto T, Hirawa N, Kihara M, Takagi N, Ishii M (1993) Identification and characterization of adenosine A1, receptor-cAMP system in human glomeruli. Kidney Int 43:928–932

    PubMed  CAS  Google Scholar 

  • Traynor T, Yang T, Huang YG, Arend L, Oliverio MI, Coffman T, Briggs JP, Schnermann J (1998) Inhibition of adenosine-l receptor-mediated preglomerular vasoconstriction in AT1A receptor-deficient mice. Am J Physiol 275:F922–F927

    PubMed  CAS  Google Scholar 

  • Tseng CJ, Kuan CJ, Chu H, Tung CS (1993) Effect of caffeine treatment on plasma renin activity and angiotensin I concentrations in rats on a low sodium diet. Life Sci 52:883–890

    PubMed  CAS  Google Scholar 

  • Ueda J (1972) Adenine nucleotides and renal function: Special reference with intrarenal distribution of blood flow. Japan J Pharmacol 22:5

    Google Scholar 

  • Ueno M, Brookins J, Beckman B, Fisher JW (1988) A1 and A2, adenosine receptor regulation of erythropoietin production. Life Sci 43:229–237

    PubMed  CAS  Google Scholar 

  • Vallon V, Osswald H (1994) Dipyridamole prevents diabetes-induced alterations of kidney function in rats. Naunyn-Schmiedeberg’s Arch Pharmacol 349:217–222

    CAS  Google Scholar 

  • van Buren M, Bijlsma JA, Boer P, van Rijn HJM, Koomans HA (1993) Natriuretic and hypotensive effect of adenosine-1 blockade in essential hypertension. Hypertension 22:728–734

    PubMed  Google Scholar 

  • van Waarde A, Stromski ME, Thulin G, Gaudio KM, Kashgarian M, Shulman RG, Siegel NJ (1989) Protection of the kidney against ischemic injury by inhibition of 5′-nucleotidase. Am J Physiol 256:F298–F305

    PubMed  Google Scholar 

  • Vargas F, Osuna A, Fernández-Rivas A (1996) Renal vascular reactivity to ATP in hyper- and hypothyroid rats. Experientia 52:225–229

    PubMed  CAS  Google Scholar 

  • Viskoper RJ, Maxwell MH, Lupu AN, Rosenfeld S (1977) Renin stimulation by isoproterenol and theophylline in the isolated perfused kidney. Am J Physiol 232:F248–F253

    PubMed  CAS  Google Scholar 

  • Weaver DR, Reppert SM (1992) Adenosine receptor gene expression in rat kidney. Am J Physiol 263:F991–F995

    PubMed  CAS  Google Scholar 

  • Weber RG, Jones CR, Palacios JM, Lohse MJ (1988) Autoradiographic visualization of A1, adenosine receptors in brain and peripheral tissues from rat and guinea-pig using 125I_HPIA. Neurosci Lett 87:215–220

    PubMed  CAS  Google Scholar 

  • Weihprecht H, Lorenz JN, Briggs JP, Schnermann J (1992) Vasomotor effects of purinergic agonists in isolated rabbit afferent arterioles. Am J Physiol 263:F1026–F1033

    PubMed  CAS  Google Scholar 

  • Weihprecht H, Lorenz JN, Briggs JP, Schnermann J (1994) Synergistic effects of angiotensin and adenosine in the renal microvasculature. Am J Physiol 266:F227–F239

    PubMed  CAS  Google Scholar 

  • Weinberg JM, Davis JA, Shayman JA, Knight PR (1989) Alterations of cytosolic calcium in LLC-PK1 cells induced by vasopressin and exogenous purines. Am J Physiol 256:C967–C976

    PubMed  CAS  Google Scholar 

  • Weinberg JM, Humes HD (1986) Increases of cell ATP produced by exogenous adenine nucleotides in isolated rabbit kidney tubules. Am J Physiol 250:F720–F733

    PubMed  CAS  Google Scholar 

  • Wilcox CS, Welch WJ, Schreiner GF, Belardinelli L (1999) Natriuretic and diuretic actions of a highly selective adenosine A1, receptor antagonist. J Am Soc Nephrol 10:714–720

    PubMed  CAS  Google Scholar 

  • Wu PH, Churchill PC (1985) 2-chloro-[3H]-adenosine binding in isolated rat kidney membranes. Arch Int Pharmacodyn 273:83–87

    PubMed  CAS  Google Scholar 

  • Yagil Y (1990) Interaction of adenosine with vasopressin in the inner medullary collecting duct. Am {it Physiol 259:F679–F687

    CAS  Google Scholar 

  • Yagil Y (1992) Differential effect of basolateral and apical adenosine on AVP-stimulated cAMP formation in primary culture of IMCD. Am J Physiol 263:F268–F276

    PubMed  CAS  Google Scholar 

  • Yagil Y (1994) The effects of adenosine on water and sodium excretion. J Pharmacol Exp Ther 268:826–835

    PubMed  CAS  Google Scholar 

  • Yagil C, Katni G, Yagil Y (1994) The effects of adenosine on transepithelial resistance and sodium uptake in the inner medullary collecting duct. Pflügers Arch 427:225–232

    PubMed  CAS  Google Scholar 

  • Yamaguchi S, Umemura S, Tamura K, Iwamoto T, Nyui N, Ishigami T, Ishii M (1995) Adenosine A1, receptor mRNA in microdissected rat nephron segments. Hypertension 26:1181–1185

    PubMed  CAS  Google Scholar 

  • Yang C-M, Tsai Y-J, Pan S-L, Tsai C-T, Wu W-B, Chiu C-T, Luo S-F, Ou JT (1997) Purinoccptor-stimulated phosphoinositide hydrolysis in Madin-Darby canine kidney (MDK) cells. Naunyn Schmiedeberg’s Arch Pharmacol 356:1–7

    CAS  Google Scholar 

  • Yao K, Kusaka H, Sato K, Karasawa A (1994) Protective effects of KW-3902,a novel adenosine A1-receptor antagonist, against gentamicin-induced acute renal failure in rats. Jpn J Pharmacol 65:276–170

    Google Scholar 

  • Zegarra-Moran O, Romeo G, Galietta LJ (1995) Regulation of transepithelial ion transport by two different purinoceptors in the apical membrane of canine kidney (MDCK) cells. Br J Pharmacol 114:1052–1056

    PubMed  CAS  Google Scholar 

  • Zou AP, Nithipatikom K, Li PL, CowleyAW Jr (1999a) Role of renal medullary adenosine in the control of blood flow and sodium excretion. Am J Physiol 276:R790–R798

    Google Scholar 

  • Zou A-P, Wu F, Li P-L and Cowley AW Jr (1999b) Effect of chronic salt loading on adenosine metabolism and receptor expression in renal cortex and medulla in rats. Hypertension 33:511–516

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jackson, E. (2001). P1 and P2 Receptors in the Renal System. In: Abbracchio, M.P., Williams, M. (eds) Purinergic and Pyrimidinergic Signalling II. Handbook of Experimental Pharmacology, vol 151 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56921-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56921-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67848-9

  • Online ISBN: 978-3-642-56921-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics