Purinergic Receptors and the Pharmacology of Type 2 Diabetes

  • P. Petit
  • D. Hillaire-Buys
  • M.M. Loubatières-Mariani
  • J. Chapal
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 151 / 2)

Abstract

Diabetes mellitus is the phenotypic expression of a disorder resulting from various environmental factors interacting with a genetic component. It is an heterogeneous metabolic syndrome consisting of a dysregulation of glucose homeostasis, with additional abnormalities in lipid and protein metabolism. This disorder induces both acute and long-term complications, particularly cardiovascular, with an increased rate of morbidity and mortality as compared to the general population. The incidence and associated complications of the disease are in continuous progression; indeed, by the year 2010, the total number of people with diabetes is projected to reach 221 million, as compared to an estimated 124 million in 1997 (Amos et al. 1997). The prevalence of diabetes in adults worldwide was estimated to be 4.0% in 1995 and to rise to 5.4% by the year 2025 (King et al. 1998).

Keywords

Fructose Sine Adenine Indomethacin Glucagon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar-Bryan L, Clement IV JP, Gonzalez G, Kunjilwar K, Babenko A, Bryan J (1998) Toward understanding the assembly and structure of KATP channels. Physiol Rev 78:227–245PubMedGoogle Scholar
  2. Amos AF, McCarty DJ, Zimmet P (1997) The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabetic Med 14 (Suppl 5):S1–85PubMedGoogle Scholar
  3. Angello DA, Berne RM, Coddington NM (1993) Adenosine and insulin mediate glucose uptake in normoxic rat hearts by different mechanisms. Am J Physiol 265:H880–H885PubMedGoogle Scholar
  4. Arkhammar P, Hallberg A, Kindmark H, Nilsson T, Rorsman P, Berggren PO (1990) Extracellular ATP increases cytoplasmic free Ca2+ concentration in clonal insulin-producing RINm5F cells. Biochem J 265:203–211PubMedGoogle Scholar
  5. Atkinson DE (1978) Cellular energy metabolism and its regulation. Academic Press, San DiegoGoogle Scholar
  6. Baron AD, Brechtel G, Wallace P, Edelman SV (1988) Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am J Physiol 255:E769–E774PubMedGoogle Scholar
  7. Bertrand G, Chapal J, Loubatières-Mariani MM, Roye M (1987) Evidence for two different P2-purinoceptors on β cell and pancreatic vascular bed. Br J Pharmacol 91:783–787PubMedGoogle Scholar
  8. Bertrand G, Chapal J, Puech R, Loubatières-Mariani MM (1991) Adenosine-5′-O-(2-thiodiphosphate) is a potent agonist at P2 purinoceptors mediating insulin secretion from perfused rat pancreas. Br J Pharmacol 102:627–630PubMedGoogle Scholar
  9. Bertrand G, Nenquin M, Henquin JC (1989a) Comparison of the inhibition of insulin release by activation of adenosine and α 2 -adrenergic receptors in rat β cells. Biochem J 259:223–228Google Scholar
  10. Bertrand G, Petit P, Bozem M, Henquin JC (1989b) Membrane and intracellular effects of adenosine in mouse pancreatic β cells. Am J Physiol 257:E473–E478Google Scholar
  11. Blachier F, Malaisse WJ (1988) Effect of exogenous ATP upon inositol phosphate production, cationic fluxes and insulin release in pancreatic islet cells. Biochem Biophys Acta 970:222–229PubMedCrossRefGoogle Scholar
  12. Boden G (1997) Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 46:3–10PubMedCrossRefGoogle Scholar
  13. Budohoski L, Challis RAJ, McManus B, Newsholme EA (1984) Effects of analogues of adenosine and methyl xanthines on insulin sensitivity in soleus muscle of the rat. FEBS Lett 167:1–4PubMedCrossRefGoogle Scholar
  14. Campbell IL, Taylor KW (1982). Effects of adenosine, 2-deoxyadenosine and N6-phenylisopropyladenosine on rat islet function and metabolism. Biochem J 204:689–696PubMedGoogle Scholar
  15. Candela JLR, Garcia-Fernandez MC (1963) Stimulation of secretion of insulin by adenosine-triphosphate. Nature 197:1210 (Abstract)CrossRefGoogle Scholar
  16. Challis RAJ, Budohoski L, McManus B, Newsholme EA (1984) Effects of an adenosine-receptor antagonist on insulin-resistance in soleus muscle from obese Zucker rats. Biochem J 221:915–917PubMedGoogle Scholar
  17. Challis RAJ, Richards SJ, Budohoski L (1992) Characterization of the adenosine receptor modulating insulin action in rat skeletal muscle. Eur J Pharmacol 226:121–128CrossRefGoogle Scholar
  18. Chapal J, Hillaire-Buys D, Bertrand G, Pujalte D, Petit P, Loubatières-Mariani MM (1997) Comparative effects of adenosine 5′-triphosphate and related analogues on insulin secretion from the rat pancreas. Fundam Clin Pharmacol 11:537–545PubMedCrossRefGoogle Scholar
  19. Chapal J, Loubatières-Mariani MM (1981a) Effects of phosphate-modified adenine nucleotide analogues on insulin secretion from perfused rat pancreas. Br J Pharmacol 73:105–110Google Scholar
  20. Chapal J, Loubatières-Mariani MM (1981b) Attempt to antagonize the stimulatory effect of ATP on insulin secretion. Eur J Pharmacol 74:127–134CrossRefGoogle Scholar
  21. Chen YD, Golay A, Swislocki AL, Reaven GM (1987) Resistance to insulin suppression of plasma free fatty acid concentrations and insulin stimulation of glucose uptake in non-insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 64:17–21PubMedCrossRefGoogle Scholar
  22. Cox BF, Clark KL, Perrone MH, Welzel GE, Greenland BD, Colussi DJ, Merkel LA (1997) Cardiovascular and metabolic effects of adenosine Al-receptor agonists in streptozotocin-treated rats. J Cardiovasc Pharmacol 29:417–426PubMedCrossRefGoogle Scholar
  23. Crist GH, Xu B, Lanoue KF, Lang CH (1998) Tissue-specific effects of in vivo adenosine receptor blockade on glucose uptake in Zucker rats. FASEB J 12:1301–1308PubMedGoogle Scholar
  24. Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329: 977–986Google Scholar
  25. Dixon AK, Gubitz AK, Sirinathsinghui DJ, Richardson PJ, Freeman TC (1996) Tissue distribution of adenosine receptors mRNAs in the rat. Br J Pharmacol 118: 1461–1468PubMedGoogle Scholar
  26. Ebert R, Schwabe U (1973) Studies on the antilipolytic effect of adenosine and related compounds in isolated fat cells. Naunyn-Schmiedeberg’s Arch Pharmacol 278:247–259CrossRefGoogle Scholar
  27. Espinal J, Challiss RAJ, Newsholme EA (1983) Effect of adenosine deaminase and adenosine analogue on insulin sensitivity in soleus muscle of the rat. FEBS Lett 158:103–106PubMedCrossRefGoogle Scholar
  28. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (1997) Report. Diabetes Care 20:1183–1197Google Scholar
  29. Fernandez-Alvarez J, Hillaire-Buys D, Manteghetti M, Chapal J, Loubatières-Mariani MM, Gomis R, Petit P (1998) Comparative effects of P2 receptor agonists on insulin secretion from human and rat pancreatic islets. Drug Develop Res 43:62, A 239Google Scholar
  30. Fischer B, Shulkin A, Sheihet L, Boyer JL, Harden KT, Gendron FP, Baudoin AR, Chapal J, Hillaire-Buys D, Petit P (1998) Adenosine 5′-phosphorothioates-2-thioether and 5′-boranophosphate-2-thioether derivatives as potential antidiabetic drugs. Drug Develop Res 43:28, A108Google Scholar
  31. Geschwind JF, Hiriart M, Glennon MC, Najafi H, Corkey BE, Matschinsky FM, Prentki M (1989) Selective activation of Ca2+ influx by extracellular ATP in a pancreatic β-cell line (HIT). Bioch Biophys Acta 1012:107–115CrossRefGoogle Scholar
  32. Green A, Johnson JL (1991) Evidence for impaired coupling of receptors to Gi protein in adipocytes from streptozotocin-induced diabetic rats. Diabetes 40:88–94PubMedCrossRefGoogle Scholar
  33. Gylfe E, Hellman B (1987) External ATP mimics carbachol in initiating calcium mobilization from pancreatic β cells conditioned by previous exposure to glucose. Br J Pharmacol 92:281–289PubMedGoogle Scholar
  34. Han DH, Hansen PA, Nolte LA, Holloszy JO (1998) Removal of adenosine decreases the responsiveness of muscle glucose transport to insulin and contractions. Diabetes 47:1671–1675PubMedCrossRefGoogle Scholar
  35. Hillaire-Buys D, Bertrand G, Chapal J, Puech R, Ribes G, Loubatières-Mariani MM (1993) Stimulation of insulin secretion and improvement of glucose tolerance in rat and dog by the P2Y purinoceptor agonist, adenosine-5′-O-(2-thiodiphosphate). Br J Pharmacol 109:183–187PubMedGoogle Scholar
  36. Hillaire-Buys D, Bertrand G, Gross R, Loubatières-Mariani MM (1987) Evidence for an inhibitory A1 subtype adenosine receptor on pancreatic insulin-secreting cells. Eur J Pharmacol 136:109–112PubMedCrossRefGoogle Scholar
  37. Hillaire-Buys D, Chapal J, Linck N, Blayac JP, Petit P, Loubatières-Mariani MM (1998) Involvement of K+ channel permeability changes in the L-NAME and indomethacin resistant part of adenosine-5′-O-(2-thiodiphosphate)-induced relaxation of pancreatic vascular bed. Br J Pharmacol 124:149–156PubMedCrossRefGoogle Scholar
  38. Hillaire-Buys D, Chapal J, Petit P, Loubatières-Mariani MM (1991) Dual regulation of pancreatic vascular tone by P2X and P2Y purinoceptor subtypes. Eur J Pharmacol 199:309–314PubMedCrossRefGoogle Scholar
  39. Hillaire-Buys D, Gross R, Chapal J, Ribes G, Loubatières-Mariani MM (1992) P2Y purinoceptor responses of β cells and vascular bed are preserved in diabetic rat pancreas. Br J Pharmacol 106:610–615PubMedGoogle Scholar
  40. Hillaire-Buys D, Gross R, Loubatières-Mariani MM, Ribes G (1989) Effect of pertussis toxin on A1 receptor-mediated inhibition of insulin secretion. Br J Pharmacol 96:3–4PubMedGoogle Scholar
  41. Ishikawa J, Mitani H, Bandoh T, Kimura M, Totsuka T, Hayashi S (1998) Hypoglycemic and hypotensive effects of 6-cyclohexyl-2′-O-methyl-adenosine, an adenosine Al receptor agonist, in spontaneously hypertensive rat complicated with hyperglycemia. Diabetes Res Clin Pract 39:3–9PubMedCrossRefGoogle Scholar
  42. Joost HG, Steinfelder HJ (1982) Modulation of insulin sensitivity by adenosine. Effects on glucose transport, lipid synthesis, and insulin receptors of the adipocyte. Mol Pharmacol 22:614–618PubMedGoogle Scholar
  43. Julius S, Gudbrandsson T, Jamerson K, Shahab ST, Andersson O (1991) The hemodynamic link between insulin resistance and hypertension. J Hypertens 9:983–986PubMedCrossRefGoogle Scholar
  44. Karoon P, Rubino A, Burnstock G (1995) Enhanced sympathetic neurotransmission in the tail artery of l,3-dipropyl-8 sulphophenylxanthine (DPSPX)-treated rats. Br J Pharmacol 116:1918–1922PubMedGoogle Scholar
  45. Kather H, Bieger W, Michel G, Aktories K, Jakobs KH (1985) Human fat cell lipolysis is primarily regulated by inhibitory modulators acting through distinct mechanisms. J Clin Invest 76:1559–1565PubMedCrossRefGoogle Scholar
  46. Kindmark H, Köhler M, Nilsson T, Arkhammar P, Wiechel KL, Rorsman P, Efendic S, Berggren PO (1991) Measurements of cytoplasmic free Ca2+ concentration in human pancreatic islets and insulinoma cells. FEBS Lett 291:310–314PubMedCrossRefGoogle Scholar
  47. King H, Aubert RE, Herman WH (1998) Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 21:1414–1431PubMedCrossRefGoogle Scholar
  48. Kuroda M, Honnor RC, Cushman SW, Londos C, Simpson IA (1987) Regulation of insulin-stimulated glucose transport in the isolated rat adipocyte. J Biol Chem 262:245–253PubMedGoogle Scholar
  49. Law WR, McLane MP, Raymond RM (1988) Adenosine is required for myocardial insulin responsiveness in vivo. Diabetes 37:842–845 Law WR, Raymond RM (1988) Adenosine potentiates insulin-stimulated myocardial glucose uptake in vivo. Am J Physiol 254:H970–H975PubMedGoogle Scholar
  50. Leighton B, Lozeman FJ, Vlachonikolis IG, Challis RAJ, Pitcher JA, Newsholme EA (1988) Effects of adenosine deaminase on the sensitivity of glucose transport, glycolysis and glycogen synthesis to insulin in muscles of the rat. Int J Biochem 20:23–27PubMedCrossRefGoogle Scholar
  51. Levine RA, Oyama S, Kagan A, Glick SM (1970) Stimulation of insulin and growth hormone secretion by adenine nucleotides in primates. J Lab Clin Med 75:30–36PubMedGoogle Scholar
  52. Li G, Milani D, Dunne MJ, Pralong WF, Théier JM, Petersen OH, Wollheim CB (1991) Extracellular ATP causes Ca2+-dependent and -independent insulin secretion in RINm5F cells. J Biol Chem 266:3449–3457PubMedGoogle Scholar
  53. Londos C, Cooper DMF, Wolff J (1980) Subclasses of external adenosine receptors. Proc Natl Acad Sci USA 77:2551–2554PubMedCrossRefGoogle Scholar
  54. Loubatières-Mariani MM, Chapal J, Lignon F, Valette G (1979) Structural specificity of nucleotides for insulin secretory action from the isolated perfused rat pancreas. Eur J Pharmacol 59:277–286PubMedCrossRefGoogle Scholar
  55. Loubatières-Mariani MM, Hillaire-Buys D, Chapal J, Bertrand G, Petit P (1997) P2 purinoceptor agonists: new insulin secretagogues potentially useful in the treatment of non-insulin-dependent diabetes mellitus. In: Jacobson KA, Jarvis MF (eds) Purinergic approaches in experimental therapeutics. Wiley-Liss, pp 253–260Google Scholar
  56. Loubatières-Mariani MM, Petit P, Chapal J, Hillaire-Buys D, Bertrand G, Ribes G (1995) Effects of purinoceptor agonists on insulin secretion. In: Belardinelli L, Pelleg A (eds) Adenosine and adenine nucleotides: From molecular biology to integrative physiology. Kluwer, Boston, pp 337–345CrossRefGoogle Scholar
  57. Merkel LA, Hawkins ED, Colussi DJ, Greenland BD, Smits GJ, Perrone MH, Cox BF (1995) Cardiovascular and antilipolytic effects of the adenosine agonist GR79236. Pharmacology 51:224–236PubMedCrossRefGoogle Scholar
  58. Nomura H, Nagashima K, Kusaka H, Karasawa A (1995) Antihypertensive effects of KW-3902, an adenosine Al-receptor antagonist, in Dahl salt-sensitive rats. Jpn J Pharmacol 68:389–396PubMedCrossRefGoogle Scholar
  59. Petit P, Bertrand G, Schmeer W, Henquin JC (1989) Effects of extracellular nucleotides on the electrical, ionic and secretory events in mouse pancreatic β cells. Br J Pharmacol 98:875–882PubMedGoogle Scholar
  60. Petit P, Hillaire-Buys D, Manteghetti M, Debrus S, Chapal J, Loubatières-Mariani MM (1998) Evidence for two different types of P2-receptors stimulating insulin secretion from pancreatic B cell. Br J Pharmacol 125:1368–1374PubMedCrossRefGoogle Scholar
  61. Petit P, Loubatières-Mariani MM, Keppens S, Sheehan MJ (1996) Purinergic receptors and metabolic function. Drug Develop Res 39:413–425CrossRefGoogle Scholar
  62. Petit P, Manteghetti M, Loubatières-Mariani MM (1988) Differential effects of purinergic and cholinergic activation on the hydrolysis of membrane polyphosphoinositides in rat pancreatic islets. Biochem Pharmacol 37:1213–1217PubMedCrossRefGoogle Scholar
  63. Petit P, Manteghetti M, Puech R, Loubatières-Mariani MM (1987) ATP and phosphate-modified adenine nucleotide analogues: effects on insulin secretion and calcium uptake. Biochem Pharmacol 36:377–380PubMedCrossRefGoogle Scholar
  64. Qu X, Cooney G, Donnelly R (1997) Short-term metabolic and haemodynamic effects of GR 79236 in normal and fructose-fed rats. Eur J Pharmacol 338:269–276PubMedCrossRefGoogle Scholar
  65. Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose-fatty acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet i:785–789CrossRefGoogle Scholar
  66. Reaven G, Chang H, Ho H, Jeng CY, Hoffman B (1988) Lowering of plasma glucose in diabetic rats by antilipolytic agents. Am J Physiol 254:E23–E30PubMedGoogle Scholar
  67. Ribes G, Bertrand G, Petit P, Loubatières-Mariani MM (1988) Effects of 2-methylthio ATP on insulin secretion in the dog in vivo. Eur J Pharmacol 155:171–174PubMedCrossRefGoogle Scholar
  68. Schwabe U, Ebert R, Erbler HC (1975) Adenosine release from fat cells: effect on cyclic AMP levels and hormone actions. Adv Cyclic Nucleotide Res 5:569–583PubMedGoogle Scholar
  69. Squires PE, James RFL, London NJM, Dunne MJ (1994) ATP-induced intracellular Ca2+ signals in isolated human insulin-secreting cells. Pflügers Arch 427:181–183PubMedCrossRefGoogle Scholar
  70. Stam NJ, Klomp J, Van de Heuvel N, Olijve W (1996) Molecular cloning and characterization of a novel orphan receptor (P2P) expressed in human pancreas that shows high structural homology to the P2U purinoceptor. FEBS Lett 384:260–264PubMedCrossRefGoogle Scholar
  71. Tang J, Pugh W, Polonsky KS, Zhang H (1996) Preservation of insulin secretory responses to P2 purinoceptor agonists in Zucker diabetic fatty rats. Am J Physiol 270:E504–E512PubMedGoogle Scholar
  72. Taylor WM, Halperin ML (1979) Stimulation of glucose transport in rat adipocytes by insulin, adenosine, nicotinic acid and hydrogen peroxide. Biochem J 178:381–389PubMedGoogle Scholar
  73. Theler JM, Mollard P, Guérineau N, Vacher P, Pralong WF, Schlegel W, Wollheim CB (1992) Video imaging of cytosolic Ca2+ in pancreatic β cells stimulated by glucose, carbachol, and ATP. J Biol Chem 267:18110–18117PubMedGoogle Scholar
  74. Tokuyama Y, Hara M, Jones EMC, Fan Z, Bell GI (1995) Cloning of rat and mouse P2Y purinoceptors. Biochem Biophys Res Commun 211:211–218PubMedCrossRefGoogle Scholar
  75. Uehara Y, Numabe A, Hirawa N, Kawabata Y, Nagoshi H, Kaneko H, Gomi T, Goto A, Toyo-oka T, Omata M (1995) A new adenosine subtype-1 receptor antagonist, FK-838, attenuates salt-induced hypertension in Dahl salt-sensitive rats. Am J Hypertens 8:1189–1199PubMedCrossRefGoogle Scholar
  76. UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853Google Scholar
  77. Vannucci SJ, Nishimura H, Satoh S, Cushman SW, Holman GD, Simpson IA (1992) Cell surface accessibility of GLUT4 glucose transporters in insulin-stimulated rat adipose cells. Biochem J 288:325–330PubMedGoogle Scholar
  78. Van Schaick EA, Zuideveld KP, Tukker HE, Langemeijer MW, Ijzerman AP, Danhof M (1998) Metabolic and cardiovascular effects of the adenosine Al receptor agonist N6-(p-sulfophenyl)adenosine in diabetic Zucker rats: influence of the disease on the selectivity of action. J Pharmacol Exp Ther 287:21–30PubMedGoogle Scholar
  79. Vergauwen L, Hespel P, Richter EA (1994) Adenosine receptors mediate synergistic stimulation of glucose uptake and transport by insulin and by contractions in rat skeletal muscle. J Clin Invest 93:974–981PubMedCrossRefGoogle Scholar
  80. Wang CZ, Namba N, Gonoi T, Inagaki N, Seino S (1996) Cloning and pharmacological characterization of a fourth P2X receptor subtype widely expressed in brain and peripheral tissues including various endocrine tissues. Biochem Biophys Res Commun 220:196–202PubMedCrossRefGoogle Scholar
  81. Wyatt DA, Edmunds MC, Rubio R, Berne RM, Lasley RD, Mentzer RM Jr (1989) Adenosine stimulates glycolytic flux in isolated perfused rat hearts by Al-adenosine receptors. Am J Physiol 257:H1952–H1957PubMedGoogle Scholar
  82. Xu B, Berkich DA, Crist GH, Lanoue KF (1998) Al adenosine receptor antagonism improves glucose tolerance in Zucker rats. Am J Physiol 274:E271–E279PubMedGoogle Scholar
  83. Yki-Järvinen H (1990) Acute and chronic effects of hyperglycaemia on glucose metabolism. Diabetologia 33:579–585PubMedCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2001

Authors and Affiliations

  • P. Petit
    • 1
  • D. Hillaire-Buys
    • 1
  • M.M. Loubatières-Mariani
    • 1
  • J. Chapal
    • 1
  1. 1.Laboratory of Pharmacology (Research Unit UPRES EA 1677), Faculty of MedicineMontpellier I UniversityFrance

Personalised recommendations