Skip to main content

P1 Receptors in the Cardiovascular System

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 151 / 2))

Abstract

The presence of adenosine receptors on cardiovascular tissues has previously been established on the basis of functional responses to adenosine and adenosine analogs. Specific functions attributed to each of the four adenosine receptor subtypes (A1, A2A, A2B, and A3) are discussed in detail below following a summary of the direct evidence for adenosine receptors in cardiovascular tissues based on the detection of receptor transcripts or protein.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbracchio MP, Ceruti S, Brambilla R, Barbieri D, Camurri A, Franceschi C, Giammarioli AM, Jacobson KA, Cattabeni F, Malorni W (1998) Adenosine A(3) receptors and viability of astrocytes. Drug Dev Res 45:379–386

    CAS  Google Scholar 

  • Abebe W, Hussain T, Olanrewaju H, Mustafa SJ (1995) Role of nitric oxide in adenosine receptor mediated relaxation of porcine coronary artery. Am J Physiol 269:H1672–H1678

    PubMed  CAS  Google Scholar 

  • Armstrong S, Ganote CE (1995) In vitro ischaemic preconditioning of isolated rabbit cardiomyocytes: effects of selective adenosine receptor blockade and calphostin C. Cardiovascular Research 29:647–652

    PubMed  CAS  Google Scholar 

  • Armstrong SC, Hoover DB, Shivell LC, Ganote CE (1997) Preconditioning of isolated rabbit cardiomyocytes — no evident separation of induction, memory and protection. Journal of Molecular & Cellular Cardiology 29:2285–2298

    CAS  Google Scholar 

  • Auchampach JA, Gross GJ (1993) Adenosine A1 receptors, KATP channels, and ischemic preconditioning in dogs. Am J Physiol Heart Circ Physiol 264:H1327–H1336

    CAS  Google Scholar 

  • Auchampach JA, Jin J, Wan TC, Caughey GH, Linden J (1997) Canine mast cell adenosine receptors: cloning and expression of the A3 receptors and evidence that degranulation is mediated by the A2B receptor. Mol Pharmacol 52:846–860

    PubMed  CAS  Google Scholar 

  • Barbieri D, Abbracchio MP, Salvioli S, Monti D, Cossarizza A, Ceruti S, Brambilla R, Cattabeni F, Jacobson KA, Franceschi C (1998) Apoptosis by 2-chloro-2′-deoxy- adenosine and 2-chloro-adenosine in human peripheral blood mononuclear cells. Neurochem Int 32:493–504

    PubMed  CAS  Google Scholar 

  • Bardenheuer H, Schrader J (1986) Supply-to-demand ratio for oxygen determines formation of adenosine by the heart. Am J Physiol 250:H173–80

    PubMed  CAS  Google Scholar 

  • Barnes CR, Mandell GL, Carper HT, Luong S, Sullivan GW (1995) Adenosine modulation of tumor necrosis factor-a-induced neutrophil activation. Biochem Pharmacol 50:1851–1857

    PubMed  CAS  Google Scholar 

  • Baukrowitz T, Schulte U, Oliver D, Herlitze S, Krauter T, Tucker SJ, Ruppersberg JP, Fakler B (1998) PIP2 and PIP as determinants for ATP inhibition of KATP channels [see comments]. Science 282:1141– 1144

    PubMed  CAS  Google Scholar 

  • Belardinelli L, Giles WR, West A (1988) Ionic mechanisms of adenosine actions in pacemaker cells from rabbit heart. J Physiol 405:615–633

    PubMed  CAS  Google Scholar 

  • Belardinelli L, Shryock JC, Ruble J, Monopoli A, Dionisotti S, Ongini E, Dennis DM, Baker SP (1996) Binding of the novel nonxanthine A2A adenosine receptor antagonist [3H]SCH58261 to coronary artery membranes. Circ Res 79:1153–1160

    PubMed  CAS  Google Scholar 

  • Belardinelli L, Shryock JC, Snowdy S, Zhang Y, Monopoli A, Lozza G, Ongini E, Olsson RA, Dennis DM (1998) The A2A adenosine receptor mediates coronary vasodilation. J Pharmacol Exp Ther 284:1066–1073

    PubMed  CAS  Google Scholar 

  • Bellardinelli L, Linden J, Berne RM (1989) The cardiac effects of adenosine. Prog Cardiovasc Dis 32:73–97

    Google Scholar 

  • Claeys MJ, Yrints CJ, Bosmans JM, Conraads VM, Snoeck JP (1996) Aminophylline inhibits adaptation to ischaemia during angioplasty. Role of adenosine in ischaemic preconditioning [see comments]. Eur Heart J 17:539–544

    PubMed  CAS  Google Scholar 

  • Clemo HF, Belardinelli L (1986) Effect of adenosine on atrioventricular conduction. 2. Modulation of atrioventricular node transmission by adenosine in hypoxic isolated guinea pig hearts. Circ Res 59:437–446

    PubMed  CAS  Google Scholar 

  • Cleveland JCJ, Meldrum DR, Rowland RT, Banerjee A, Harken AH (1997) Adenosine preconditioning of human myocardium is dependent upon the ATP-sensitive K+ channel. J Mol Cel Cardiol 29:175–182

    CAS  Google Scholar 

  • Cleveland JCJ, Meldrum DR, Rowland RT, Sheridan BC, Banerjee A, Harken AH (1996) The obligate role of protein kinase C in mediating clinically accessible cardiac preconditioning. Surgery 120:345–352

    PubMed  Google Scholar 

  • Cohen MV, Yang XM, Downey JM (1997) Attenuation of S-T segment elevation during repetitive coronary occlusions truly reflects the protection of ischemic preconditioning and is not an epiphenomenon. Basic Res Cardiol 92:426–434

    PubMed  CAS  Google Scholar 

  • Cordeiro JM, Ferrier GR, Howlett SE (1995) Effects of adenosine in simulated ischemia and reperfusion in guinea pig ventricular myocytes. Am J Physiol 269:H121–H129

    PubMed  CAS  Google Scholar 

  • Cox BF, Greenland BD, Perrone MH, Merkel LA (1994) Ischaemia/reperfusion selectively attenuates coronary vasodilatation to an adenosine A2- but not to an A1- agonist in the dog. Br J Pharmacol 111:1233–1239

    PubMed  CAS  Google Scholar 

  • Darvish A, Metting PJ (1993) Purification and regulation of an AMP-specific cytosolic 5′-nucleotidase from dog heart. Am J Physiol 264:H1528–H1534

    PubMed  CAS  Google Scholar 

  • Dawicki DD, Chatterjee D, Wyche J, Rounds S (1997) Extracellular ATP and adenosine cause apoptosis of pulmonary artery endothelial cells. Am J Physiol 273:L485–L494

    PubMed  CAS  Google Scholar 

  • Decking UK, Schlieper G, Kroll K, Schrader J (1997) Hypoxia-induced inhibition of adenosine kinase potentiates cardiac adenosine release. Circ Res 81:154–164

    PubMed  CAS  Google Scholar 

  • Decking UKM, Schrader J (1998) Role of adenosine kinase and AMP deminase in the regulation of cardaic purine release. Drug Dev Res 45:295–303

    CAS  Google Scholar 

  • Deussen A, Borst M, Kroll K, Schrader J (1988) Formation of S-adenosylhomocysteine in the heart. 2. A sensitive index for regional myocardial underperfusion. Circ Res 63:250–261

    PubMed  CAS  Google Scholar 

  • Deussen A, Moser G, Schrader J (1986) Contribution of coronary endothelial cells to cardiac adenosine production. Pflugers Arch 406:608–614

    PubMed  CAS  Google Scholar 

  • Deutsch E, Berger M, Kussmaul WG, Hirshfeld JWJ, Herrmann HC, Laskey WK (1990) Adaptation to ischemia during percutaneous transluminal coronary angioplasty. Clinical, hemodynamic, and metabolic features [see comments]. Circ 82:2044–2051

    CAS  Google Scholar 

  • Dixon AK, Gubitz AK, Sirinathsinghji DJ, Richardson PJ, Freeman TC (1996) Tissue distribution of adenosine receptor mRNAs in the rat. Br J Pharmacol 118:1461–1468

    PubMed  CAS  Google Scholar 

  • Dobson JG, Fenton RA (1998) Cardiac physiology of adenosine. In: Burnstock G, Dobson JGJ, Liang BT, Linden J (eds) Cardovascular biology of purines. Kluwer, Dordrecht, p 21

    Google Scholar 

  • Dorschner H, Brekardin E, Uhde I, Schwanstecher C, Schwanstecher M (1999) Stoichiometry of sulfonylure a-induced ATP-sensitive potassium channel closure. Mol Pharmaco155:1060–1066

    PubMed  CAS  Google Scholar 

  • Dougherty C, Barucha J, Schofield PR, Jacobson KA, Liang BT (1998) Cardiac myocytes rendered ischemia resistant by expressing the human adenosine Al or A3 receptor. FASEB J 12:1785–1792

    PubMed  CAS  Google Scholar 

  • Drury AN, Szent-Gyorgyi A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol (London) 68:213–237

    CAS  Google Scholar 

  • Dunckcr DJ, Stubenitsky R, Verdouw PD (1998) Role of adenosine in the regulation of coronary blood flow in swine at rest and during treadmill exercise. Am J Physiol 275:H1663–H1772

    Google Scholar 

  • Duncker DJ, Van Zon NS, Ishibashi Y, Bache RJ (1996) Role of K+ ATP channels and adenosine in the regulation of coronary blood flow during exercise with normal and restricted coronary blood flow. J Clin Invest 97:996–1009

    PubMed  CAS  Google Scholar 

  • Ely SW, Mentzer RMJ, Lasley RD, Lee BK, Berne RM (1985) Functional and metabolic evidence of enhanced myocardial tolerance to ischemia and reperfusion with adenosine. J Thorac Cardiovasc Surg 90:549–556

    PubMed  CAS  Google Scholar 

  • Ethier MF, Chander V, Dobson JGJ (1993) Adenosine stimulates proliferation of human endothelial cells in culture. Am J Physiol 265:H131–H138

    PubMed  CAS  Google Scholar 

  • Evoniuk G, von Borstel RW, Wurtman RJ (1987) Antagonism of the cardiovascular effects of adenosine by caffeine or 8-(p-sulfophenyl)theophylline. J Pharmacol Exp Ther 240:428–432

    PubMed  CAS  Google Scholar 

  • Felix SB, Stangl V, Frank TM, Harms C, Berndt T, Kastner R, Baumann G (1997) Release of a stable cardiodepressant mediator after myocardial ischaemia during reperfusion. Cardiovasc Res 35:68–79

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Jacobson KA, Jonzon B, Kirk KL, Li YO, Daly JW (1987) Evidence that a novel 8- phenyl-substituted xanthine derivative is a cardioselective adenosine receptor antagonist in vivo. J Cardiovasc Pharmacol 9:396–400

    PubMed  CAS  Google Scholar 

  • Froldi G, Belardinelli L (1990) Species-dependent effects of adenosine on heart rate and atrioventricular nodal conduction. Mechanism and physiological implications. Circ Res 67:960–978

    PubMed  CAS  Google Scholar 

  • Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D’Alonzo AJ, Lodge NJ, Smith MA, Grover GJ (1997) Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP- sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res 81:1072–1082

    PubMed  CAS  Google Scholar 

  • Gauthier NS, Morrison RR, Byford AM, Jones R, Headrick JP, Matherne GP (1998) Functional genomics of transgenic overexpression of A(1) adenosine receptors in the heart. Drug Dev Res 45:402–409

    CAS  Google Scholar 

  • Giannella E, Mochmann HC, Levi R (1997) Ischemic preconditioning prevents the impairment of hypoxic coronary vasodilatation caused by ischemia/reperfusion: role of adenosine A1/A3 and bradykinin B2 receptor activation. Circ Res 81:415–422

    PubMed  CAS  Google Scholar 

  • Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94:1621–1628

    PubMed  CAS  Google Scholar 

  • Grigoriev SM, Skarga YY, Mironova GD, Marinov BS (1999) Regulation of mitochondrial K-ATP channel by redox agents. Biochim Biophys Acta 1410:91–96

    PubMed  CAS  Google Scholar 

  • Hannon JP, Pfannkuche HJ, Fozard JR (1995) A role for mast cells in adenosine A3 receptor-mediated hypotension in the rat. Br J Pharmacol 115:945–952

    PubMed  CAS  Google Scholar 

  • Harden FA, Harrison GJ, Headrick J, Jordan LR, Willis RJ (1996) A biphasic response to adenosine in the coronary vasculature of the K(+)-arrested perfused rat heart. Eur J Pharmacol 307:49–53

    PubMed  CAS  Google Scholar 

  • Harrison GJ, Willis RJ, Headrick JP (1998) Extracellular adenosine levels and cellular energy metabolism in isochemically preconditioned rat heart. Cardiovasc Res 40:74–87

    PubMed  CAS  Google Scholar 

  • Hashimi MW, Thornton JD, Downey JM, Cohen MV (1998) Loss of myocardial protection from ischemic preconditioning following chronic exposure to R(−)-N6-(2-phenylisopropyl) adenosine is related to defect at the adenosine A1 receptor. Mol Cell Biochem 186:19–25

    PubMed  CAS  Google Scholar 

  • Hashimura K, Kijima Y, Matsu-ura Y, Ueda T, Kato Y, Mori I, Minamino T, Kitakaze M, Hori M (1997) Effect of theophylline on adaptation of the heart to myocardial ischemia during percutaneous transluminal coronary angioplasty in patients with stable angina pectoris. Am J Cardiol 79:475–477

    PubMed  CAS  Google Scholar 

  • Headrick JP (1996) Ischemic preconditioning: bioenergetic and metabolic changes and the role of endogenous adenosine. J Mol Cell Cardiol 28:1227–1240

    PubMed  CAS  Google Scholar 

  • Headrick JP, Matherne GP, Berne RM (1992) Myocardial adenosine formation during hypoxia: effects of ecto-5′-nucleotidase inhibition. J Mol Cell Cardiol 24:295–303

    PubMed  CAS  Google Scholar 

  • Hill RJ, Oleynek JJ, Magee W, Knight DR, Tracey WR (1998) Relative importance of adenosine A1 and A3 receptors in mediating physiological or pharmacological protection from ischemic myocardial injury in the rabbit heart. J Mol Cell Cardiol 30:579–585

    PubMed  CAS  Google Scholar 

  • Hofman PL, Hiatt K, Yoder MC, Rivkees SA (1997) A1 adenosine receptors potently regulate heart rate in mammalian embryos. Am J Physiol 273:R1374–R1380

    PubMed  CAS  Google Scholar 

  • Hu H, Sato T, Seharaseyon J, Liu YG, Johns DC, O’Rourke B, Marban E (1999) Pharmacological and histochemical distinctions between molecularly defined sarcolemmal K-ATP channels and native cardiac mitochondrial K-ATP channels. Mol Pharmacol 55:1000–1005

    PubMed  CAS  Google Scholar 

  • Hu K, Li GR, Nattel S (1999) Adenosine-induced activation of ATP-sensitive K+ channels in excised membrane patches is mediated by PKC. Am J Physiol 276:H488–H495

    PubMed  CAS  Google Scholar 

  • Huang CH, Kim SJ, Ghaleh B, Kudej RK, Shen YT, Bishop SP, Vatner SF (1999) An adenosine agonist and preconditioning shift the distribution of myocardial blood flow in conscious pigs. Am J Physiol 276:H368–H375

    PubMed  CAS  Google Scholar 

  • Ikonomidis JS, Shirai T, Weisel RD, Derylo B, Rao V, Whiteside CI, Mickle DA, Li RK (1997) Preconditioning cultured human pediatric myocytes requires adenosine and protein kinase C. Am J Physiol 272:H1220–H1230

    Google Scholar 

  • Iliodromitis EK, Miki T, Liu Gs, Downey JM, Cohen MV, Kremastinos DT (1998) The PKC activator PMA preconditions rabbit heart in the presence of adenosine receptor blockade: is 5′-nucleotidase important? J Mol Cell Cardiol 30:2201–2211

    PubMed  CAS  Google Scholar 

  • Jacobson KA, Moro S, Kim YC, Li AH (1998) A(3) adenosin e receptors: protective vs. damaging effects identified using novel agonists and antagonists. Drug Dev Res 45:113–124

    CAS  Google Scholar 

  • Jin X, Shepherd RK, Duling BR, Linden J (1997) Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation. J Clin Invest 100:2849–2857

    PubMed  CAS  Google Scholar 

  • Karczewski P, Hendrischke T, Wolf WP, Morano I, Bartel S, Schrader J (1998) Phosphorylation of phospholamban correlates with relaxation of coronary artery induced by nitric oxide, adenosine, and prostacyclin in the pig. J Cell Biochem 70:49–59

    PubMed  CAS  Google Scholar 

  • Karmazyn M, Cook MA (1992) Adenosine A1 receptor activation attenuates cardiac injury produced by hydrogen peroxide. Circ Res 71:1101–1110

    PubMed  CAS  Google Scholar 

  • Karoon P, Rubino A, Burnstock G (1995) Enhanced sympathetic neurotransmission in the tail artery of 1,3-dipropyl-8-sulphophenylxanthine (DPSPX)-treated rats. Br J Pharmacol 116:1918–1922

    PubMed  CAS  Google Scholar 

  • Kitakaze M, Minamino T, Node K, Komamura K, Inoue M, Hori M, Kamada T (1996) Activation of ecto-5′-nucleotidase by protein kinase C attenuates irreversible cellular injury due to hypoxia and reoxygenation in rat cardiomyocytes. J Mol Cell Cardiol 28:1945–1955

    PubMed  CAS  Google Scholar 

  • Kroll K, Decking UK, Dreikorn K, Schrader J (1993) Rapid turnover of the AMP-adenosine metabolic cycle in the guinea pig heart. Circ Res 73:846–856

    PubMed  CAS  Google Scholar 

  • Kurachi Y, Nakajima T, Sugimoto T (1986) On the mechanism of activation of muscarinic potassium channels by adenosine in isolated atrial cells: involvement of GTP-binding proteins. Pflugers Arch 407:264–274

    PubMed  CAS  Google Scholar 

  • Kusachi S, Thompson RD, Olsson RA (1983) Ligand selectivity of dog coronary adenosine receptor resembles that of adenylate cyclase stimulatory (Ra) receptors. J Pharmacol Exp Ther 227:316–321

    PubMed  CAS  Google Scholar 

  • Lasley RD, Noble MA, Konyn PJ, Mentzer RM, Jr. (1995) Different effects of an adenosine A1 analogue and ischemic preconditioning in isolated rabbit hearts. Ann Thorac Surg 60:1698–1703

    PubMed  CAS  Google Scholar 

  • Lee AE, Wilcox K, Jacobson KA, Dichter M, Liang BT (1998) Adenosine receptor subtypes and cardioprotection. Drug Dev Res 45:394–401

    CAS  Google Scholar 

  • Lee HT, Thompson CI, Hernandez A, Lewy JL, Belloni FL (1993a) Cardiac desensitization to adenosine analogues after prolonged R-PIA infusion in vivo. Am J Physiol 265:H1916–H1927

    Google Scholar 

  • Lee HT, Thompson CI, Linden J, Belloni FL (1993b) Differential sensitization of cardiac actions of adenosine in rats after chronic theophylline treatment. Am J Physiol 264:H1634–H1643

    Google Scholar 

  • Li JM, Fenton RA, Cutler BS, Dobson JGJ (1995) Adenosine enhances nitric oxide production by vascular endothelial cells. Am J Physiol 269:C519–C523

    PubMed  CAS  Google Scholar 

  • Liang BT (1997) Protein kinase C-mediated preconditioning of cardiac myocytes: role of adenosine receptor and KATP channel. Am J Physiol 273:H847–H853

    PubMed  CAS  Google Scholar 

  • Liang BT (1998) Protein kinase C-dependent activation of KATP channel enhances adenosine-induced cardioprotection. Biochem J 336:337–343

    PubMed  CAS  Google Scholar 

  • Liang BT, Jacobson KA (1998) A physiological role of the adenosine A3 receptor: sustained cardioprotection. Proc Natl Acad Sci USA 95:6995–6999

    PubMed  CAS  Google Scholar 

  • Libert F, Schiffmann SN, Lefort A, Parmentier M, Gérard C, Dumont JE, Vanderhaeghen J-J, Vassart G (1991) The orphan receptor cDNA RDC7 encodes an A1 adenosine receptor. EMBO J 10:1677–1682

    PubMed  CAS  Google Scholar 

  • Linden J (1991) Structure and function of the A1 adenosine receptor. FASEB J 5:2668–2676

    PubMed  CAS  Google Scholar 

  • Linden J (1994) Cloned adenosine A3 receptors: pharmacological properties, species differences and receptor functions. Trends Pharmacol Sci 15:298–306

    PubMed  CAS  Google Scholar 

  • Linden J, Hollen CE, Patel A (1990) The mechanism by which adenosine and cholinergic agents reduce contractility in rat myocardium: correlation with cyclic adenosine monophosphate and receptor densities. Circ Res 56:728–735

    Google Scholar 

  • Linden J, Jacobson KA (1998) Molecular biology and pharmacology of recombinant human adenosine receptors. In: Burnstock G, Dobson JG Jr, Liang BT, Linden J (eds) Cardiovascular biology of purines. Kluwer, Dordrecht, p 1

    Google Scholar 

  • Linden J, Patel A, Sadek S (1985) [125I]Aminobenzyladenosine, a new radioligand with improved specific binding to adenosine receptors in heart. Circ Res 56:279–284

    PubMed  CAS  Google Scholar 

  • Linden J, Thai T, Figler H, Robeva AS (1999) Characterization of human A2B adenosine receptors: radioligand binding, Western blotting and coupling to Gq in HEK-293 and HMC-1 mast cells. Mol Pharmacol 56:705–713

    PubMed  CAS  Google Scholar 

  • Liu GS, Thornton J, Van Winkle DM, Stanley AW, Olsson RA, Downey JM (1991) Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circ 84:350–356

    CAS  Google Scholar 

  • Liu Y, Sato T, O’Rourke B, Marban E (1998) Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? Circ 97:2463–2469

    CAS  Google Scholar 

  • Lloyd HG, Schrader J (1993) Adenosine metabolism in the guinea pig heart: the role of cytosolic S-adenosyl-L-homocysteine hydrolase, 5′-nucleotidase and adenosine kinase. Eur Heart J 14 [Suppl I]:27– 33

    PubMed  CAS  Google Scholar 

  • Louttit JB, Hunt AAE, Maxwell MP, Drew GM (1999) The time course of cardioprotection induced by GR79236, a selective adenosine A(1)-recept or agonist, in myocardial ischaemia-reperfusion injury in the pig. J Cardiovasc Pharmacol 33:285–291

    PubMed  CAS  Google Scholar 

  • Lozza G, Conti A, Ongini E, Monopoli A (1997) Cardioprotective effects of adenosine A1 and A2A receptor agonists in the isolated rat heart. Pharmacol Res 35:57–64

    PubMed  CAS  Google Scholar 

  • Luthin DR, Olsson RA, Thompson RD, Sawmiller DR, Linden J (1995) Characterization of two affinity states of adenosine A2A receptors with a new radioligand, 2-[2-(4-amino-3-[125I]iodophenyl)ethylamino]adenosine. Mol Pharmacol 47:307–313

    PubMed  CAS  Google Scholar 

  • Maczewski M, Beresewicz A (1998) The role of adenosine and ATP-sensitive potassium channels in the protection afforded by ischemic preconditioning against the post-ischemic endothelial dysfunction in guinea-pig hearts. J Mol Cell Cardiol 30:1735–1747

    PubMed  CAS  Google Scholar 

  • Martin PL (1992) Evidence that adenosine receptors in the dog left atrium are not of the typical A1 or A2 adenosine receptor subtypes. Eur J Pharmacol 214:199–205

    PubMed  CAS  Google Scholar 

  • Martin PL, Ueeda M, Olsson RA (1993) 2-Phenylethoxy-9-methyladenine: an adenosine receptor antagonist that discriminates between A2 adenosine receptors in the aorta and the coronary vessels from the guinea pig. J Pharmacol Exp Ther 265:248–253

    PubMed  CAS  Google Scholar 

  • Martin PL, Wysocki RJ, Barrett RJ, May JM, Linden J (1996) Characterization of 8-(N- methylisopropyl)amino-N6-(5′-endohydroxy-endonorbornyl)-9-methyladenine (WRC-0571), a highly potent and selective, non-xanthine antagonist of A1 adenosine receptors. J Pharmacol Exp Ther 276:490–499

    PubMed  CAS  Google Scholar 

  • Matherne GP, Byford AM, Gilrain JT, Dalkin AC (1996) Changes in myocardial A1 adenosine receptor and message levels during fetal development and postnatal maturation. Biol Neonate 70:199–205

    PubMed  CAS  Google Scholar 

  • Matherne GP, Linden J, Byford AM, Gauthier NS, Headrick JP (1997) Transgenic A(1) adenosine receptor overexpression increases myocardial resistance to ischemia. Proc Natl Acad Sci USA 94:6541–6546

    PubMed  CAS  Google Scholar 

  • Mathot RA, Cleton A, Soudijn W, Ijzerman AP, Danhof M (1995) Pharmacokinetic modelling of the haemodynamic effects of the A2A adenosine receptor agonist CGS 21680C in conscious normotensive rats. Br J Pharmacol 114:761–768

    PubMed  CAS  Google Scholar 

  • McKinley JB, Dahlman D, MacLeod KM (1990) The interaction of adenosine analogues with cAMP-generating and cAMP-independent positive inotropic agents in rabbit left atrium. Naunyn-Schmiedebergs Arch Pharmacol 342:605–612

    PubMed  CAS  Google Scholar 

  • Meester BJ, Shankley NP, Welsh NJ, Wood J, Meijler FL, Black JW (1998) Pharmacological classification of adenosine receptors in the sinoatrial and atrioventricular nodes of the guinea-pig. Br J Pharmacol 124:685–692

    PubMed  CAS  Google Scholar 

  • Meininger CJ, Schelling ME, Granger HJ (1988) Adenosine and hypoxia stimulate proliferation and migration of endothelial cells. Am J Physiol 255:H554–H562

    PubMed  CAS  Google Scholar 

  • Meng F, Xie G, Chalmers D, Morgan C, Watson SJ Jr, Akil H (1994) Cloning and expression of the A2A adenosine receptor from guinea pig brain. Neurochem Res 19:613–621

    PubMed  CAS  Google Scholar 

  • Meyerhof W, Müller-Brechlin R, Richter D (1991) Molecular cloning of a novel putative G-protein coupled recept or expressed during rat spermiogenesis. Febs Lett 284:155–160

    PubMed  CAS  Google Scholar 

  • Minamino T, Kitakaze M, Komamura K, Node K, Takeda H, Inoue M, Hori M, Kamada T (1995) Activation of protein kinase C increases adenosine production in the hypoxic canine coronary artery through the extracellular pathway. Arterioscler Thromb Vase Biol 15:2298–2304

    CAS  Google Scholar 

  • Miura T, Kawamura S, Goto M, Sakamoto J, Tsuchida A, Matsuzaki M, Shimamoto K (1998) Effect of protein kinase C inhibitors on cardioprotection by ischemic preconditioning depends on the number of preconditioning episodes. Cardiovasc Res 37:700–709

    PubMed  CAS  Google Scholar 

  • Miura T, Suzuki K, Shimamoto K, Iimura O (1996) Suppression of the degradation of adenine nucleotides during ischemia may not be a sufficient mechanism for infarct size limitation by preconditioning. Basic Res Cardiol 91:425–432

    PubMed  CAS  Google Scholar 

  • Miura T, Tsuchida A (1999) Adenosine and preconditioning revisited [Review]. Clin Exp Pharmacol Physiol 26:92–99

    PubMed  CAS  Google Scholar 

  • Miyawaki H, Ashraf M (1997) CA2+ as a mediator of ischemic preconditioning. Circ Res 80:790–799

    PubMed  CAS  Google Scholar 

  • Mizumura T, Auchampach JA, Linden J, Bruns RF, Gross GJ (1996) PD 81, 723, an allosteric enhancer of the Al adenosine receptor, lowers the threshold for ischemic preconditioning in dogs. Circ Res 79:415–423

    PubMed  CAS  Google Scholar 

  • Monopoli A, Casati C, Lozza G, Forlani A, Ongini E (1998) Cardiovascular pharmacology of the A2A adenosine receptor antagonist, SCH 58261, in the rat. J Pharmacol Exp Ther 285:9–15

    PubMed  CAS  Google Scholar 

  • Mudumbi RV, Montamat SC, Bruns RF, Vestal RE (1993) Cardiac functional responses to adenosine by PD 81723, an allosteric enhancer of the adenosine A1 receptor. Am J Physiol 264:H1017–H1022

    PubMed  CAS  Google Scholar 

  • Munch G, Kurz T, Urlbauer T, Seyfarth M, Richardt G (1996) Differential presynaptic modulation of noradrenaline release in human atrial tissue in normoxia and anoxia. Br J Pharmacol 118:1855–1861

    PubMed  CAS  Google Scholar 

  • Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circ 74:1124–1136

    CAS  Google Scholar 

  • Musser B, Morgan ME, Leid M, Murray TF, Linden J, Vestal RE (1993) Species comparison of adenosine and β-adrenoceptors in mammalian atrial and ventricular myocardium. Eur J Pharmacol 246:105–111

    PubMed  CAS  Google Scholar 

  • Nees S, Herzog V, Becker BF, Bock M, Des RC, Gerlach E (1985) The coronary endothelium: a highly active metabolic barrier for adenosine. Basic Res Cardiol 80:515–529

    PubMed  CAS  Google Scholar 

  • Newby AC (1984) Adenosine and the concept of “retaliatory metabolites”. Trends Biol Sci 9:42–44

    CAS  Google Scholar 

  • Niwa M, Hara A, Kanamori Y, Matsuno H, Kozawa O, Yoshimi N, Mori H, Uematsu T (1999) Inhibition of tumor necrosis factor-alpha induced neutrophil apoptosis by cyclicAMP: involvement of caspase cascade. Eur J Pharmacol 371:59–67

    PubMed  CAS  Google Scholar 

  • Norton GR, Woodiwiss AJ, McGinn RJ, Lorbar M, Chung ES, Honeyman TW, Fenton RA, Dobson JGJ, Meyer TE (1999) Adenosine A1 receptor-mediated antiadrenergic effects are modulated by A2A receptor activation in rat heart. Am J Physiol 276:H341-H349

    PubMed  CAS  Google Scholar 

  • Ogata T, Schubert P (1996) Programmed cell death in rat microglia is controlled by extracellular adenosine. Neurosci Lett 218:91–94

    PubMed  CAS  Google Scholar 

  • Oguchi T, Furukawa Y, Sawaki S, Kasama M, Chiba S (1995) Are negative chronotropic and inotropic responses to adenosine differentiated at the receptor or postreceptor levels in isolated dog hearts? J Pharmacol Exp Ther 272:838–844

    PubMed  CAS  Google Scholar 

  • Parenteau GL, Clark RE (1991) Prevention of ischemia-reperfusion injury by the allergy drug lodoxamide tromethamine. Ann Thorac Surg 52:832–838

    PubMed  CAS  Google Scholar 

  • Park KH, Rubin LE, Gross SS, Levi R (1992) Nitric oxide is a mediator of hypoxic coronary vasodilatation. Relation to adenosine and cyclooxygenase-derived metabolites. Circ Res 71:992–1001

    PubMed  CAS  Google Scholar 

  • Parkinson FE, Clanachan AS (1991) Adenosine receptors and nucleoside transport sites in cardiac cells. Br J Pharmacol 104:399–405

    PubMed  CAS  Google Scholar 

  • Peterfreund RA, MacCollin M, Gusella J, Fink JS (1996) Characterization and expression of the human A2A adenosine receptor gene. J Neurochem 66:362–368

    PubMed  CAS  Google Scholar 

  • Phillis JW, Song D, O’Regan MH (1998) The role of adenosine in rat coronary flow regulation during respiratory and metabolic acidosis. Eur J Pharmacol 356:199–206

    PubMed  CAS  Google Scholar 

  • Pisarenko OI, Tskitishvily OV, Studneva IM, Serebryakova LI, Timoshin AA, Ruuge EK (1997) Metabolic and antioxidant effects of R(+/−)-N6-(2-phenylisopropyl)-adenosine following regional ischemia and reperfusion in canine myocardium. Biochim Biophys Acta 1361:295–303

    PubMed  CAS  Google Scholar 

  • Przyklenk K, Hata K, Zhao L, Kloner RA, Elliott GT (1997) Disparate effects of preconditioning and MLA on 5′-NT and adenosine levels during coronary occlusion. Am J Physiol 273:H945–H951

    PubMed  CAS  Google Scholar 

  • Raatikainen MJ, Peuhkurinen KJ, Hassinen IE (1994) Contribution of endothelium and cardiomyocytes to hypoxia-induced adenosine release. J Mol Cell Cardiol 26:1069–1080

    PubMed  CAS  Google Scholar 

  • Reeves JJ, Jones CA, Sheehan MJ, Vardey CJ, Whelan CJ (1997) Adenosine A3 receptors promote degranulation of rat mast cells both in vitro and in vivo. Inflamm Research 46:180–184

    CAS  Google Scholar 

  • Reimer KA, Murry CE, Yamasawa I, Hill ML, Jennings RB (1986) Four brief periods of myocardial ischemia cause no cumulative ATP loss or necrosis. Am J Physiol 251:H1306–H1315

    PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver DR, Stehle JH, Rivkees SA (1991) Molecular cloning and characterization of a rat A1-adenosine receptor that is widely expressed in brain and spinal cord. Mol Endocrinol 5:1037–1048

    PubMed  CAS  Google Scholar 

  • Rice PJ, Armstrong SC, Ganote CE (1996) Concentration-response relationships for adenosine agonists during preconditioning of rabbit cardiomyocytes. J Mol Cell Cardiol 28:1355–1365

    PubMed  CAS  Google Scholar 

  • Sanae F, Ohmae S, Kurita M, Sawanishi H, Takagi K, Miyamoto K (1995) Structureactivity relationships of alkylxanthines: alkyl chain elongation at the N1- or N7-position decreases cardiotonic activity in the isolated guinea pig heart. Jpn J Pharmacol 69:75–82

    PubMed  CAS  Google Scholar 

  • Sato T, O’Rourke B, Marban E (1998) Modulation of mitochondrial ATP-dependent K+ channels by protein kinase C. Circ Res 83:110–114

    PubMed  CAS  Google Scholar 

  • Schlack W, Schafer M, Uebing A, Schafer S, Borchard U, Thamer V (1993) Adenosine A2-receptor activation at reperfusion reduces infarct size and improves myocardial wall function in dog heart. J Cardiovasc Pharmacol 22:89–96

    PubMed  CAS  Google Scholar 

  • Schreieck J, Richardt G (1999) Endogenous adenosine reduces the occurrence of ischemia-induced ventricular fibrillation in rat heart. J Mol Cell Cardiol 31:123–134

    PubMed  CAS  Google Scholar 

  • Schütz W, Schrader J, Gerlach E (1981) Different sites of adenosine formation in the heart. Am J Physiol 240:H963-H970

    PubMed  Google Scholar 

  • Shepherd RK, Duling BR (1996) Inosine-induced vasoconstriction is mediated by histamine and thromboxane derived from mast cells. Am J Physiol 270:H560–H566

    PubMed  CAS  Google Scholar 

  • Shepherd RK, Linden J, Duling BR (1996) Adenosine-induced vasoconstriction in vivo — role of the mast cell and A(3) adenosine receptor. Circ Res 78:627–634

    PubMed  CAS  Google Scholar 

  • Shiki K, Hearse DJ (1987) Preconditioning of ischemic myocardium: reperfusioninduced arrhythmias. Am J Physiol 253:H1470–H1476

    PubMed  CAS  Google Scholar 

  • Shneyvays V, Nawrath H, Jacobson KA, Shainberg A (1998) Induction of apoptosis in cardiac myocytes by an A3 adenosine receptor agonist. Exp Cell Res 243:383–397

    PubMed  CAS  Google Scholar 

  • Shryock JC, Belardinelli L (1997) Adenosine and adenosine receptors in the cardiovascular system: biochemistry, physiology, and pharmacology [Review]. Am J Cardiol 79:2–10

    PubMed  CAS  Google Scholar 

  • Shryock JC, Snowdy S, Baraldi PG, Cacciari B, Spalluto G, Monopoli A, Ongini E, Baker SP, Belardinelli L (1998) A(2A)-Adenosine receptor reserve for coronary vasodilation. Circ 98:711–718

    CAS  Google Scholar 

  • Shyng SL, Nichols CG (1998) Membrane phospholipid control of nucleotide sensitivity of KATP channels [see comments]. Science 282:1138–1141

    PubMed  CAS  Google Scholar 

  • Slezak J, Tribulova N, Pristacova J, Uhrik B, Thomas T, Khaper N, Kaul N, Singal PK (1995) Hydrogen peroxide changes in ischemic and reperfused heart. Cytochemistry and biochemical and X-ray microanalysis. Am J Pathol 147:772–781

    PubMed  CAS  Google Scholar 

  • Smits GJ, McVey M, Cox BF, Perrone MH, Clark KL (1998) Cardioprotective effects of the novel adenosine A1/A2 receptor agonist AMP 579 in a porcine model of myocardial infarction. J Pharmacol Exp Ther 286:611–618

    PubMed  CAS  Google Scholar 

  • Smits P, Lenders JWM, Willemsen JJ, Thien T (1991) Adenosine attenuates the response to sympathetic stimuli in humans. Hypertension 18:216–223

    PubMed  CAS  Google Scholar 

  • Smolenski RT, Suitters A, Yacoub MH (1992) Adenine nucleotide catabolism and adenosine formation in isolated human cardiomyocytes [errata in J Mol Cell Cardiol 1993, 25(7):887 and 1993, 25:1381]. J Mol Cell Cardiol 24:91–96

    PubMed  CAS  Google Scholar 

  • Snowdy S, Liang HX, Blackburn B, Lum R, Nelson M, Wang L, Pfister J, Sharma BP, Wolff A, Belardinelli L (1999) A comparison of an A(1) adenosine receptor agonist (CVT-510) with diltiazem for slowing of AV nodal conduction in guineapig. Br J Pharmacol 126:137–146

    PubMed  CAS  Google Scholar 

  • Sommerschild HT, Grund F, Offstad J, Jynge P, Ilebekk A, Kirkeboen KA (1997) Importance of endogenous adenosine during ischemia and reperfusion in neonatal porcine hearts. Circ 96:3094–3103

    CAS  Google Scholar 

  • Stehle JH, Rivkees SA, Lee JJ, Weaver DR, Deeds JD, Reppert SM (1992) Molecular cloning and expression of the cDNA for a novel A2-adenosine receptor subtype. Mol Endo 6(3):384–393

    CAS  Google Scholar 

  • Stella L, Berrino L, Maione S, de Novellis V, Rossi F (1993) Cardiovascular effects of adenosine and its analogs in anaesthetized rats. Life Sci 53:755–763

    PubMed  CAS  Google Scholar 

  • Stella L, de Novellis V, Marabese I, Berrino L, Maione S, Filippelli A, Rossi F (1998) The role of A3 adenosine receptors in central regulation of arterial blood pressure. Br J Pharmacol 125:437–440

    PubMed  CAS  Google Scholar 

  • Stepp DW, Van Bibber R, Kroll K, Feigl EO (1996) Quantitative relation between interstitial adenosine concentration and coronary blood flow. Circ Res 79:601–610

    PubMed  CAS  Google Scholar 

  • Strickler J, Jacobson KA, Liang BT (1996) Direct preconditioning of cultured chick ventricular myocytes novel functions of cardiac adenosine a(2a) and a(3) receptors. J Clin Invest 98:1773–1779

    PubMed  CAS  Google Scholar 

  • Sullivan GW, Linden J (1998) Role of A2A adenosine receptors in inflammation. Drug Dev Res 45:103–112

    CAS  Google Scholar 

  • Szewczyk A, Marban E (1999) Mitochondria: a new target for K+ channel openers? Trends Pharmacol Sci 20:157–161

    PubMed  CAS  Google Scholar 

  • Taggart PI, Sutton PMI, Oliver RM, Swanton RH (1993) Ischemic preconditioning may activate potassium channels in humans? Circ 88 [Suppl I]:69

    Google Scholar 

  • Takagi H, King GL, Ferrara N, Aiello LP (1996b) Hypoxia regulates vascular endothelial growth factor receptor KDR/Flk gene expression through adenosine A2 receptors in retinal capillary endothelial cells. Invest Ophthalmol Vis Sci 37:1311–1321

    Google Scholar 

  • Takagi H, King GL, Robinson GS, Ferrara N, Aiello LP (1996a) Adenosine mediates hypoxic induction of vascular endothelial growth factor in retinal pericytes and endothelial cells. Invest Ophthalmol Vis Sci 37:2165–2176

    Google Scholar 

  • Tanaka M, Ito H, Adachi S, Akimoto H, Nishikawa T, Kasajima T, Marumo F, Hiroe M (1994) Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ Res 75:426–433

    PubMed  CAS  Google Scholar 

  • Tang XL, Wang HX, Cho CH, Wong TM (1998) Reduced responsiveness of [Ca2+]i to adenosine A1- and A2-receptor stimulation in the isoproterenol-stimulated ventricular myocytes of spontaneously hypertensive rats. J Cardiovasc Pharmacol 31:493–498

    PubMed  CAS  Google Scholar 

  • Thomas GP, Sims SM, Cook MA, Karmazyn M (1998) Hydrogen peroxide-induced stimulation of L-type calcium current in guinea pig ventricular myocytes and its inhibition by adenosine A1 receptor activation. J Pharmacol Exp Ther 286:1208–1214

    PubMed  CAS  Google Scholar 

  • Tofovic SP, Branch KR, Oliver RD, Magee WD, Jackson EK (1991) Caffeine potentiates vasodilator-induced renin release. J Pharmacol Exp Ther 256:850–860

    PubMed  CAS  Google Scholar 

  • Tomai F, Crea F, Gaspardone A, Versaci F, De Paulis R, Polisca P, Chiariello L, Gioffre PA (1996) Effects of A1 adenosine receptor blockade by bamiphylline on ischaemic preconditioning during coronary angioplasty [see comments]. Eur Heart J 17:846–853

    PubMed  CAS  Google Scholar 

  • Tomai F, Danesi A, Ghini AS, Crea F, Perino M, Gaspardone A, Ruggeri G, Chiariello L, Gioffre PA (1999) Effects of K-ATP channel blockade by glibenclamide on the warm-up phenomenon. Eur Heart J 20:196–202

    PubMed  CAS  Google Scholar 

  • Tracey WR, Magee W, Masamune H, Kennedy SP, Knight DR, Buchholz RA, Hill RJ (1997) Selective adenosine a(3) receptor stimulation reduces ischemic myocardial injury in the rabbit heart. Cardiovas Res 33:410–415

    CAS  Google Scholar 

  • Tracey WR, Magee W, Masamune H, Oleynek JJ, Hill RJ (1998) Selective activation of adenosine A3 receptors with N6-(3-chlorobenzyl)-5′-N-methylcarboxamidoadenosine (CB-MECA) provides cardioprotection via KATP channel activation. Cardiovas Res 40:138–145

    CAS  Google Scholar 

  • Trautwein W, Hescheler J (1990) Regulation of cardiac L-type calcium current by phosphorylation and G proteins. Annu Rev Physiol 52:257–274

    PubMed  CAS  Google Scholar 

  • Tseng CJ, Biaggioni I, Appalsamy M, Robertson D (1988) Purinergic receptors in the brainstem mediate hypotension and bradycardia. Hypertension 11:191–197

    PubMed  CAS  Google Scholar 

  • Walker BA, Rocchini C, Boone RH, Ip S, Jacobson MA (1997) Adenosine A2A receptor activation delays apoptosis in human neutrophils. J Immunol 158:2926–2931

    CAS  Google Scholar 

  • Wang D, Belardinelli L (1994) Mechanism of the negative inotropic effect of adenosine in guinea pig atrial myocytes. Am J Physiol 267:H2420–H2429

    PubMed  CAS  Google Scholar 

  • Wang D, Shryock JC, Belardinelli L (1996a) Cellular basis for the negative dromotropic effect of adenosine on rabbit single atrioventricular nodal cells. Circ Res 78:697–706

    Google Scholar 

  • Wang J, Drake L, Sajjadi F, Firestein GS, Mullane KM, Bullough DA (1997) Dual activation of adenosine A1 and A3 receptors mediates preconditioning of isolated cardiac myocytes. Eur J Pharmacol 320:241–248

    PubMed  CAS  Google Scholar 

  • Wang P, Downey JM, Cohen MV (1996b) Mast cell degranulation does not contribute to ischemic preconditioning in isolated rabbit hearts. Basic Res Cardiol 91:458–467

    Google Scholar 

  • Wang YG, Ashraf M (1999) Role of protein kinase C in mitochondrial K-ATP channelmediated protection against Ca2+ overload injury in rat myocardium. Circ Res 84:1156–1165

    PubMed  CAS  Google Scholar 

  • Webb RL, McNeal RBJ, Barclay BW, Yasay GD (1990) Hemodynamic effects of adenosine agonists in the conscious spontaneously hypertensive rat. J Pharmacol Exp Ther 254:1090–1099

    PubMed  CAS  Google Scholar 

  • Wickman K, Nemec J, Gendler SJ, Clapham DE (1998) Abnormal heart rate regulation in GIRK4 knockout mice. Neuron 20:103–114

    PubMed  CAS  Google Scholar 

  • Winter CB, Cleveland JC, Butler KL, Bensard DB, Mitchell MB, Harken AH, Banerjee A (1997) Facilitative interactions between noradrenergic and purinergic signaling during preconditioning of the rat heart. J Mol Cell Cardiol 29:163–173

    PubMed  CAS  Google Scholar 

  • Wu S-N, Linden J, Visentin S, Boykin M, Belardinelli L (1989) Enhanced sensitivity of heart cells to adenosine and up-regulation of receptor number after treatment of guinea pigs with theophylline. Circ Res 65:1066–1077

    PubMed  CAS  Google Scholar 

  • Xuan YT, Tang XL, Banerjee S, Takano H, Li RCX, Han H, Qiu YM, Li JJ, Bolli R (1999) Nuclear factor-kappa B plays an essential role in the late phase of ischemic preconditioning in conscious rabbits. Circ Res 84:1095–1109

    PubMed  CAS  Google Scholar 

  • Zhang J, Belardinelli L, Jacobson KA, Otero DH, Baker SP (1997) Persistent activation by and receptor reserve for an irreversible A1-adenosine receptor agonist in DDTl MF-2 cells and in guinea pig heart. Mol Pharmacol 52:491–498

    PubMed  CAS  Google Scholar 

  • Zhao Z, Francis CE, Ravid K (1997) An A3-subtype adenosine receptor is highly expressed in rat vascular smooth muscle cells: its role in attenuating adenosineinduced increase in cAMP. Microvasc Res 54:243–252

    PubMed  CAS  Google Scholar 

  • Zhou QY, Li C, Olah ME, Stiles GL, Civelli O (1992) Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc Natl Acad Sci USA 89:7432–7436

    PubMed  CAS  Google Scholar 

  • Zhou XB, Zhai XL, Ashraf M (1996) Preconditioning of bovine endothelial cells — the protective effect is mediated by an adenosine A2 receptor through a protein kinase C signaling pathway. Circ Res 78:73–81

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Broad, R., Linden, J. (2001). P1 Receptors in the Cardiovascular System. In: Abbracchio, M.P., Williams, M. (eds) Purinergic and Pyrimidinergic Signalling II. Handbook of Experimental Pharmacology, vol 151 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56921-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56921-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67848-9

  • Online ISBN: 978-3-642-56921-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics