Skip to main content

Transgenic Amaranth (Amaranthus hypochondriacus)

  • Chapter

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 47))

Abstract

Amaranths are dicotyledonous plants that belong to the Amaranthaceae family which comprises more than 50 genera, distributed in tropical and subtropical zones of the world (Kigel and Rubin 1985). Most of these genera are native to America, and they grow in disturbed areas and produce large seedheads with small seeds. Some of them, like Amaranthus spinosus L. and A. powellii S. Watts. are considered to be weeds, while others like A. hypochondriacus L., A. cruentus L., A. retrofiexus L. and A. caudatus L. are consumed as a grain and A. dubis Mart and A. dubis L. are used as fresh vegetables when young. Additionally, some other species are used as ornamentals because of the bright colors of their leaves and inflorescences (Kiegel and Rubin 1985).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An G, Watson DB, Stachel S, Gordon MP, Nester EW (1985) New cloning vehicles for transformation of higher plants. EMBO J 4:277–288

    PubMed  CAS  Google Scholar 

  • Arya ID, Chakravarty TN, Sopory SK (1993) Development of secondary inflorescences and in vitro plantlets from inflorescence cultures of Amaranthus paniculatus. Plant Cell Rep 12:286–288

    Article  Google Scholar 

  • Bagga S, Venkateswari K, Sopory SK (1987) In vitro regeneration of plants from hypocotyl segments of Amaranthus paniculatus. Plant Cell Rep 6:183–184

    Article  Google Scholar 

  • Bennici A, Schiff S, Bovelli R (1992) In vitro culture of species and varieties of four Amaranths species. Euphytica 42:181–184

    Article  Google Scholar 

  • Bennici A, Grifoni T, Schiff S, Bovelli R (1997) Studies on growth and morphogenesis in several species and lines of Amaranth. Plant Cell Tissue Organ Cult 49:29–33

    Article  CAS  Google Scholar 

  • Berry JO, Nikolau BJ, Carr JP, Klessig DF (1985) Transcriptional and post-transcriptional regulation of ribulose 1,5-bisphosphate carboxylase gene expression in light-and dark-grown amaranth cotyledons. Mol Cell Biol 5:2238–2246

    PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cashmore AR (1984) Structure and expression of a pea nuclear gene encoding a chlorphyll a/b binding polypeptide. Proc Natl Acad Sci USA 81:2960–2964

    Article  PubMed  CAS  Google Scholar 

  • Deblaere R, Bytebier B, De Greve H, Deboeck F, Schell J, Van Montagu M, Leemans J (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res 13:4777–4788

    Article  PubMed  CAS  Google Scholar 

  • De Cleene M, De Ley J (1976) The host range of crown gall. Bot Rev 42:389–466

    Article  Google Scholar 

  • De Cleene M, Otten K (1973) Het voorkomen van Agrobaterium-kanker (crown gall) bij economisch belangrijke plantengeslachten. De Belgische Tuinbouw 54:196–197

    Google Scholar 

  • Flores HE, Teutonico RA (1982) Amaranth (Amaranthus spp.): potential grain and vegetable crops. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 2. Crops. Springer, Berlin Heidelberg New York, pp 568–578

    Google Scholar 

  • Flores HE, Thier A, Galston AW (1982) In vitro culture of grain and vegetable amaranths (Amaranthus spp.). Am J Bot 69:1049–1054

    Article  Google Scholar 

  • Fowke LC, Rennie PJ (1995) Botanical microtechniques for plant cultures. In: Gamborg OL, Phillips GC (eds) Plant cell, tissue and organ culture. Fundamental methods. Springer, Berlin Heidelberg New York, pp 271–228

    Google Scholar 

  • Gadgil VN, Roy SK (1961) Studies on crown gall tumour. I. Host susceptibility of the causal organism, Agrobacterium tumefaciens, strain B-23. Trans Bose Res Inst 24:141–146

    Google Scholar 

  • Höhn K, Helfrich O (1963) Beiträge zum Krebsproblem der höheren Pflanzen. I. Untersuchungen öber die Korrelation zwischen Krebsdisposition und Blühinduktion. Beitr Biol Pflanz 38:83–98 (cited in De Cleene M, De Ley J (1976) The host range of Crown Gall. Bot Rev 42:389–466)

    Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: The gus gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Jofre-Garfias A (1997) Transformación genética de Amaranthus hypochondriacus L. con cepas de Agrobacterium tumefaciens. PhD Thesis. Centro de Investigación y de Estudios Avanzados del IPN Unidad Irapuato, México 111 pp

    Google Scholar 

  • Jofre-Garfias A, Villegas-Sepúlveda, N, Cabrera-Ponce JL, Adame-Alvarez RM, Herrera-Estrella L, Simpson J (1997) Agrobacterium-mediated transformation of Amaranthus hyponcondriacus: light and tissue specific expression of a pea chlorophyll a/b binding protein promoter. Plant Cell Rep 16:847–852

    Google Scholar 

  • Kigel J, Rubin B (1985) Amaranthus. In: Abraham H, Halevy H (eds) Handbook of flowering plants, vol 1. CRC Press, Boca Raton pp 427–433

    Google Scholar 

  • Kulakow PA, Hauptli H (1994) Genetic characterization of grain amaranth. In: Paredes-López O (ed) Amaranth biology, chemistry and technology. CRC Press, Boca Raton pp 9–19

    Google Scholar 

  • Lopatin MI. (1936) The susceptibility of plants to Bact. Tumefaciens, the causative agent of the root-cancer of plants. Mikrobiologia (Moskwa) 5:57–75

    Google Scholar 

  • McCabe DE, Martinell BJ, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6:923–926

    Article  Google Scholar 

  • Moses PB, Chua NH (1988) Light switches for plant genes. Sci Am 258:64–69

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • National Research Council (1984) Amaranth: modern prospects for an ancient crop. National Academy Press, Washington, DC, pp 3, 5, 14

    Google Scholar 

  • Rogers SO, Bendich AJ (1994) Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin SB, Schilperoort RA, Verma DPS (eds) Plant molecular biology manual. Kluwer, Dordrecht, pp D1:1–8

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory Manual. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  • Sauer JD (1950) The grain amaranths: a survey of their history and classification. Ann Mo Bot Gard 37:561–632

    Article  Google Scholar 

  • Saunders RM, Becker R (1983) Amaranthus: a potential food and feed resource. In: Pomeranz Y (ed) Advances in cereal science and technology, vol VI. American Association of Cereal Chemists, St Paul, pp 357–396

    Google Scholar 

  • Simpson J, Timko MP, Cashmore AR, Schell J, Van Montagu M, Herrera-Estrella L (1985) Lightinducible and tissue-specific expression of a chimaeric gene under control of the 5’ flanking sequences of a pea chlorophyll a/b-binding protein gene. EMBO J 11:2723–2729

    Google Scholar 

  • Tisserat B, Galletta DP (1993) In vitro flowering in Amaranthus. Hortie Sci 23:210–212

    Google Scholar 

  • Van den Broek G, Timko MP, Kausch AP, Cashmore AR, van Montagu M, Herrera-Estrella L (1985) Targeting of a foreign protein to chloroplasts by fusion of the transit peptide from the small subunit of ribulose 1, 5-bisphosphate carboxylase. Nature 313:258–263

    Google Scholar 

  • Van Larebeke NG, Engler M, Holsters S, Van den Elsacker I, Zaenen RA, Schilperoort RA, Schell J (1974) Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature (Lond) 252:169–170

    Article  Google Scholar 

  • van Le B, Domy NT, Jeanneau M, Sadik S, Tu S, Vidal J, Tran Thanh Van K (1998) Rapid plant regeneration of a C4 dicot species: Amaranthus edulis. Plant Sci 132:45–54

    Article  Google Scholar 

  • Villegas-Sepúlveda N (1995) Aislamiento y caracterización de clonas cab y de la subunidad pequeña de Rubisco de Amaranthus hypochondriacus. Ph D Thesis. Centro de Investigación y de Estudios Avanzados del IPN Unidad Irapuato, México 84 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jofre-Garfias, A.E., Cabrera-Ponce, J.L., Adame-Alvarez, R.M., Herrera-Estrella, L., Simpson, J. (2001). Transgenic Amaranth (Amaranthus hypochondriacus). In: Bajaj, Y.P.S. (eds) Transgenic Crops II. Biotechnology in Agriculture and Forestry, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56901-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56901-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63130-6

  • Online ISBN: 978-3-642-56901-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics