Glycoproteomics: High-Throughput Sequencing of Oligosaccharide Modifications to Proteins

  • Pauline M. Rudd
  • Cristina Colominas
  • Louise Royle
  • Neil Murphy
  • Edmund Hart
  • Anthony H. Merry
  • Holger F. Heberstreit
  • Raymond A. Dwek
Part of the Principles and Practice book series (PRINCIPLES)

Abstract

Genomics establishes the relationship between biological processes and gene activity. Proteomics (James 1997), which relates biological activity to the proteins expressed by genes, is fundamental to our understanding of biology. It is the proteins, rather than the genes that encode them, which engage in biological events (Wilkins et al. 1995). Furthermore, most proteins contain post-translational modifications which are the products of enzyme reactions. Since the enzymes are coded for by different genes, the complete structure of an individual protein cannot be determined by reference to either a single gene or the protein sequence alone. One of the most common ways that a protein is modified is by the process of glycosylation, in which oligosaccharides are attached to specific sites encoded in the primary sequence of the protein (Dwek 1996).

Keywords

Corn Acetonitrile Amide Tuberculosis Oligomer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bigge JC, Patel TP, Bruce JA, Goulding PN, Charles SM, Parekh RB (1995) Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem 230:229–238PubMedCrossRefGoogle Scholar
  2. Bodian DL, Davis SJ, Rushmere NK, Morgan BP (1997) Mutational analysis of the active site and antibody epitopes of the complement-inhibitory glycoprotein, CD59. J Exp Med 185:507–516PubMedCrossRefGoogle Scholar
  3. Davis SJ, van der Merwe PA (1996) The structure and ligand interactions of CD2: implications for T-cell function. Immunol Today 17:177–187PubMedCrossRefGoogle Scholar
  4. Dustin ML, Ferguson LM, Chan PY, Springer TA, Golan DE (1996) Visualization of CD2 interaction with LFA-3 and determination of the two-dimensional dissociation constant for adhesion receptors in a contact area. J Cell Biol 132:456–474CrossRefGoogle Scholar
  5. Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96:683–720PubMedCrossRefGoogle Scholar
  6. Fletcher CM, Harrison RA, Lachman PJ, Neuhaus D (1994) Structure of a soluble, glycosylated form of the human complement regulatory protein CD59. Curr Biol Struct 2:185–199Google Scholar
  7. Guile GR, Wong SYC, Dwek RA (1994) Analytical and preparative separation of anionic oligosaccharides by weak anion-exchange high-performance liquid chromatography on an inert polymer column. Anal Biochem 222:231–235PubMedCrossRefGoogle Scholar
  8. Guile GG, Rudd PM, Wing DR, Prime SB, Dwek RA (1996) A rapid high resolution method for separating oligosaccharide mixtures and analysing sugarprints. Anal Biochem 240:210–226PubMedCrossRefGoogle Scholar
  9. Hochstrasser DF, Tissot J-D (1993) Cinical applicaation of high resolution two dimensional Polyacrylamide gel electrophoresis. In: Chrombach A, Dunn MJ (eds) Advances in electrophoresis, vol 6. Rudola VCH, Weinheim, pp 270–375Google Scholar
  10. James P (1997) Protein identification in the post-genome era: the rapid rise of proteomics. Q Rev Biophys 30:279–331PubMedCrossRefGoogle Scholar
  11. Küster B, Wheeler SF, Hunter AP, Dwek RA, Harvey DJ (1997) Sequencing of N-linked oligosaccharides directly from protein-gels: in-gel deglycosylation followed by matrix-assisted laser desorption/ionisation mass spectrometry and normal-phase high-performance liquid chromatography. Anal Biochem 250:82–101PubMedCrossRefGoogle Scholar
  12. Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB (1995) Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose binding protein. Nat Med 1:237–241PubMedCrossRefGoogle Scholar
  13. Mehta A, Lu X, Block TM, Blumberg BS, Dwek RA (1997) Hepatitis B virus envelope proteins vary drastically in their sensitivity to glycan processing. Proc Natl Acad Sci USA 94:1822–1827PubMedCrossRefGoogle Scholar
  14. Nairn HY, Lentze MJ (1992) Impact of O-glycosylation on the function of human intestinal lactase-phlorizin hydrolase. Characterisation of glycoforms varying in enzyme activity and localisation of O-glycoside addition. J Biol Chem 267:25494–25504Google Scholar
  15. Opdenakker G, Masure S, Proost P, Billiau A, Van Damme J (1991) Natural human monocyte gelatinase and its inhibitor. FEBS Lett 284:73–78PubMedCrossRefGoogle Scholar
  16. Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, Stanworth D, Rademacher TW, Mizuochi T, Taniguchi T, Matsuta K, Takeuchi F, Nagano Y, Miyamoto T, Kobata A (1985) Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316:452–457PubMedCrossRefGoogle Scholar
  17. Patel TP, Parekh RB (1994) Release of oligosaccharides from proteins by hydrazinolysis. Methods Enzymol 230:57–66PubMedCrossRefGoogle Scholar
  18. Rudd PM, Dwek RA (1997) Glycosylation: heterogeneity and the 3D structure of the protein. Crit Rev Biochem Mol Biol 32:1–100PubMedCrossRefGoogle Scholar
  19. Rudd PM, Morgan BP, Wormald MR, Harvey DJ, van den Berg CW, Davis SJ, Ferguson MAJ, Dwek RA (1997a) The glycosylation of the complement regulatory protein, CD59, derived from human erythrocytes and human platelets. J Biol Chem 272:7229–7244PubMedCrossRefGoogle Scholar
  20. Rudd PM, Guile GR, Küster B, Harvey DJ, Opdenakker G, Dwek RA (1997b) Oligosaccharide sequencing technology. Nature 388:205–208PubMedCrossRefGoogle Scholar
  21. Rudd PM, Wormald MR, Harvey DJ, Devashayem M, McAlister MSB, Barclay AN, Brown MH, Davis SJ, Dwek RA (1999a) Oligosaccharide processing in the Ly-6, scavenger receptor and immunoglobulin superfamilies — implications for roles for glycosylation on cell surface molecules. Glycobiology 9:443–458PubMedCrossRefGoogle Scholar
  22. Rudd PM, Mattu TS, Masure S, Bratt T, Van den Steen PE, Wormald MR, Kuster B, Harvey DJ, Borregaard N, Van Damme J, Dwek RA, Opdenakker G (1999b) Glycosylation of natural human neutrophil gelatinase B and neutrophilgelatinase B-associated lipocalin. Biochemistry 38:13937–13950PubMedCrossRefGoogle Scholar
  23. Shogren R, Gerken TA, Jentoft N (1989) Role of glycosylation on the conformation and chain dimensions of O-linked glycoproteins: light-scattering studies of ovine submaxillary mucin. Biochemistry 28:5525–5536PubMedCrossRefGoogle Scholar
  24. Van den Berg CW, Cinek T, Hallett MB, Horejsi V, Morgan BP (1995) Exogenous glycosyl phos-phatidylinositol-anchored CD59 associates with kinases in membrane clusters on U937 cells and becomes Ca(2+)-signaling competent. J Cell Biol 131:669–677PubMedCrossRefGoogle Scholar
  25. Van den Steen P, Rudd PM, Dwek, RA, Opdenakker G (1998) Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 33:151–208PubMedCrossRefGoogle Scholar
  26. Wilkins MR, Sanchez J-C, Gooley AA, Appel RD, Humphrey-Smith I, Hochstrasser, DF, Williams KL (1995) Progress with Proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Pauline M. Rudd
  • Cristina Colominas
  • Louise Royle
  • Neil Murphy
  • Edmund Hart
  • Anthony H. Merry
  • Holger F. Heberstreit
  • Raymond A. Dwek

There are no affiliations available

Personalised recommendations