Skip to main content

NMR and Immobilized Cells

  • Chapter
Immobilized Cells

Part of the book series: Springer ((SLM))

Abstract

Nuclear Magnetic Resonance (NMR) spectroscopy is based on the response of certain nuclei which possess an intrinsic magnetic moment (1H, 13C, 15N, 19F, 23Na, 31P, etc.) to an applied magnetic field. Such a technique can detect separate signals from various compounds within a sample and provide information on molecular identity and concentration. NMR is also widely recognized as a non-destructive, non-invasive technique for studying intracellular processes allowing in vivo estimation of intermediate metabolite concentrations in living systems. However, this is an insensitive non invasive method compared to most types of spectroscopy and requires very high cell densities for obtaining a good signal-to-noise ratio within a reasonable time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alves PM, Carrondo MJT, Santos, H (1997) Immobilization of primary brain cells in porous microcarriers for on line NMR spectroscopy in Carrondo MJT, Griffiths B, Moreira JL (eds.) Animal Cell Technology, from Vaccines to Genetic Medicine. Kluwer Academic Publishers, London, pp 91–98

    Chapter  Google Scholar 

  • Alves PM, Flögel U, Brand A, Leibfritz D, Carrondo MJT, Santos H, Sonnewald U (1996) Immobilization of primary astrocytes and neurons for NMR monitoring of biological processes in vivo. Dev Neurosci 18:478–483

    Article  PubMed  CAS  Google Scholar 

  • Balcom BJ, Fischer AE, Carpenter TA, Hall LD. (1993) Diffusion in aqueous gels. Mutual diffusion coefficients measured by one-dimensional Nuclear Magnetic Resonance Imaging. J Am Chem Soc 115:3300–3305

    Article  CAS  Google Scholar 

  • Bental M, Pick U, Avron M, Degani H (1990) Metabolic studies with NMR spectroscopy of the alga Dunaliella salina trapped within agarose beads. Eur J Biochem 188:111–116

    Article  PubMed  CAS  Google Scholar 

  • Benters J, Flogel U, Schafer T, Leibritz D, Hechtenberg S, Beyersmann D (1997) Study of the interactions of cadmium and zinc ions with cellular calcium homeostasis using 19F-NMR spectroscopy. Biochem J 322:793–799

    PubMed  CAS  Google Scholar 

  • Beuling EE, van Dusschoten D, Lens P, van den Heuvel JC, Van Has H, Ottengraf SSP. (1998) Characterization of the diffusive properties of biofilms using pulsed field gradient-nuclear magnetic resonance. Biotechnol Bioeng 60:283–291

    Article  PubMed  CAS  Google Scholar 

  • Briasco CA, Karel SF, Robertson CR. (1990) Diffusional limitations of immobilized Escherichia coli in hollow-fiber reactors: influence on 31P NMR spectroscopy. Biotechnol Bioeng 36:887–901

    Article  PubMed  CAS  Google Scholar 

  • Briasco CA, Ross DA, Robertson CR. (1990) A hollow-fiber reactor design for NMR studies of microbial cells. Biotechnol Bioeng 36:879–886

    Article  PubMed  CAS  Google Scholar 

  • Brindle K, Krikler S (1985) 31P NMR saturation transfer measurements of phosphate consumption in S. cerevisiae. Biochim Biophys Acta 847:285–292

    Article  CAS  Google Scholar 

  • Daly PF, Lyon RC, Straka EJ, Cohen JS. (1987) 31P-NMR Spectroscopy of human cancer cells proliferating in a basement membrane gel. FASEB J. 2:2596–2604

    Google Scholar 

  • Degrassi A, Toffanin R, Paoletti S, Hall LD. (1998) A better understanding of the properties of alginate solutions and gels by quantitative magnetic resonance imaging (MRI). Carbohyd Res 306:19–26

    Article  CAS  Google Scholar 

  • Doliba NM, Wehrli SL, Babsky AM, Doliba NM, Osbakken MD. (1998) Encapsulation and perfusion of mitochondria in agarose beads for functional studies with 31P-NMR. Magnet Reson Med 39:679–684

    Article  CAS  Google Scholar 

  • Doyle A, Griffiths J, Newell D (eds) (1996) Cell & Tissue Culture: Laboratory Procedures; Basic techniques for primary cell cultures and establishment of continuous cultures. John Wiley & Sons, Chichester

    Google Scholar 

  • Farghali H, Rossaro L, Gavaler J, van Thiel D, Dowd S, Williams D, Ho C (1992) 31P-NMR spectroscopy of perfused rat hepatocytes immobilized in agarose threads: application to chemical-induced hepatotoxicity. Biochim Biophys Acta 1139:105–114

    Article  PubMed  CAS  Google Scholar 

  • Fernandez EJ, Clark DS. (1987) N.m.r. spectroscopy: a non-invasive tool for studying intracellular processes. Enzyme Microb Technol 9:259–271

    Article  CAS  Google Scholar 

  • Fernandez EJ, Mancuso A, Murphy MK, Blanch HW ans Clark DS. (1990) Nuclear magnetic resonance methods for observing the intracellular environment of mammalian cells. Ann N Y Acad Sci 589:458–475

    Article  PubMed  CAS  Google Scholar 

  • Flögel U, Niendorf T, Serkova N, Brand A, Henke J, Leibfritz D (1995) Changes in organic solutes, volume, energy state and metabolism associated with osmotic stress in a glial cell line: a multinuclear NMR study. Neurochem Res 20:793–802

    Article  PubMed  Google Scholar 

  • Flögel U, Wilker W, Leibfritz D (1994) Regulation of intracellular pH in neuronal and glial tumour cells, studied by multinuclear NMR Spectroscopy. NMR Biomed 7:157–166

    Article  PubMed  Google Scholar 

  • Foxall DL, Cohen JS. (1983) NMR studies of perfused cells. J Magn Reson. 52:346–349

    CAS  Google Scholar 

  • Foxall DL, Cohen JS, Mitchel JB. (1984) Continuous perfusion of mammalian cells embedded in agarose gel threads. Exp Cell Res 154:521–529

    Article  PubMed  CAS  Google Scholar 

  • Galazzo JL, Bailey JE. (1989) In vivo nuclear magnetic resonance analysis of immobilization effects on glucose metabolism of yeast Saccharomyces cerevisiae. Biotechnol Bioeng 33:1283–1289

    Article  PubMed  CAS  Google Scholar 

  • Galazzo JL, Bailey JE. (1990) Growing Saccharomyces cerevisiae in calcium-alginate beads induces cell alterations which accelerate glucose conversion to ethanol. Biotechnol Bioeng 36:417–426

    Article  PubMed  CAS  Google Scholar 

  • Galazzo JL, Shanks JV, Bailey JE. (1987) Comparison of suspended and immobilized yeast metabolism using 3 1 P nuclear magnetic resonance spectroscopy. Biotechnol Techn 1:1–6

    Article  CAS  Google Scholar 

  • Gamcsik MP, Forder JR, Millis KK, McGovern KK. (1996) A versatile oxygenator and perfusion system for magnetic resonance studies. Biotechnol Bioeng 49:348–354

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Mendez R, Wemmer D, Hahn G, Wade-Jardetzky N, Jardetzky O (1982) Continuous flow NMR culture system for mammalian cells. Biochim Biophys Acta 720:274–280.

    Article  PubMed  CAS  Google Scholar 

  • Hammer BE, Heath CA, Mirer SD, Belfort G (1990) Quantitative flow measurements in bioreactors by nuclear magnetic resonance imaging. Bio/Technol 8:327–330

    Article  CAS  Google Scholar 

  • Hrovat ML, Wade CG, Hawkes SP. (1985) A space-efficient assembly for NMR experiments on anchorage-dependant cells. J Magn Reson 61:409–417

    CAS  Google Scholar 

  • Kaplan O, Cohen JS. (1994) Lymphocyte activation-31P magnetic resonance studies of energy metabolism and phospholipid pathways. ImmunoMethods. 4:163–178

    Article  Google Scholar 

  • Knop RH, Chen CW, Mitchell JB, Russo A, McPherson S, Cohen JS (1984) Metabolic studies of mammalian cells by 31P-NMR using a continuous perfusion technique. Biochim Biophys Acta 804:275–84

    Article  PubMed  CAS  Google Scholar 

  • Lohmeier EM, Hahn-Hagerdal B, Vogel HJ. (1995) Phosphorus-31 and Carbon-13 nuclear magnetic resonance study of glucose and xylose metabolism in agarose-immobilized Candida tropicalis. Appl Environ Microbiol 61:1420–1425

    Google Scholar 

  • Lohmeier EM, Mclntyre DD, Vogel HJ. (1996) Phosphorus-31 and Carbon-13 nuclear magnetic resonance studies of glucose and xylose metabolism in cell suspensions and agarose-immobilized cultures of Pichia stipitis and Saccharomyces cerevisiae Appl Environ Microbiol 62:2832–2838

    Google Scholar 

  • Lundberg P, Kuchel PW. (1994) Immobilization methods for NMR studies of cellular metabolism-A practical guide. ImmunoMethods. 4:163–178

    Article  PubMed  CAS  Google Scholar 

  • Lundberg P, Kuchel PW. (1997) Diffusion of solutes in agarose and alginate gels: 1H and 23Na PFGSE and 23Na TQF NMR studies. Magnet Reson Med 37:44–52

    Article  CAS  Google Scholar 

  • Lundberg P, Berners-Price SJ, Roy S, Kuchel PW. (1992) NMR studies of erythrocytes immobilized in agarose and alginate gels. Magnet Reson Med 25:273–288

    Article  CAS  Google Scholar 

  • Mancuso A, Sharfstein ST, Fernandez EJ, Clark DS, Blanch HW. (1998) Effect of extracellular glutamine concentration on primary and secondary metabolism examination of a murine hybridoma: an in vivo 13C nuclear magnetic resonance study. Biotechnol Bioeng 57:172–186

    Article  PubMed  CAS  Google Scholar 

  • Mancuso A, Sharfstein ST, Tucker SN, Clark DS, Blanch HW. (1994) Examination of primary metabolic pathways in a murine hybridoma with carbon-13 nuclear magnetic resonance spectroscopy. Biotechnol Bioeng 44:563–585

    Article  PubMed  CAS  Google Scholar 

  • McGovern KA, Schoeniger JS, Wehrle JP, Ng CE, Glickson JD. (1993) Gel-entrapment of perfluorocarbons: a fluorine-19 NMR spectroscopic method for monitoring oxygen concentration in cell perfusion systems. Magnet Reson Med 29:196–204

    Article  CAS  Google Scholar 

  • Nestle N, Kimmich R (1996a) NMR microscopy of heavy metal absorption in calcium alginate beads. Appl Biochem Biotechnol 56:9–17

    Article  CAS  Google Scholar 

  • Nestle N, Kimmich R (1996b) NMR imaging of heavy metal absorption in alginate, immobilized cells, and kombu algal biosorbents. Biotechnol Bioeng 51:538–543

    Article  PubMed  CAS  Google Scholar 

  • Nilson K, Birnbaum S, Flygare S, Linse L, Schröder U, Jeppsson U, Larsson P-O, Mosbach K, Brodelius P (1983) A general method for the immobilization of cells with preserved viability. Eur J Appl Microb Biotechnol. 17:319–326

    Article  Google Scholar 

  • Ojcius DM, Degani H, Mispelter J, Dautry-Varsat A (1998) Enhancement of ATP levels and glucose metabolism during an infection by Chlamydia, NMR studies of living cells. J Biol Chem 273:7052–7058

    Article  PubMed  CAS  Google Scholar 

  • Pangrle BJ, Walsh EG, Moore S, DiBiasio (1989) Investigation of fluid flow patterns in a hollow fiber module using magnetic resonance velocity imaging. Biotechnol Techn 3:67–72

    Article  Google Scholar 

  • Pianet I, Merle M, Labouesse J, Canioni P (1991) Phosphorus-31 nuclear magnetic resonance of C6 glioma cells and rat astrocytes, evidence for a modification of the longitudinal relaxation time of ATP and Pi during glucose starvation. Eur J Biochem 195:87–95

    Article  PubMed  CAS  Google Scholar 

  • Potter K, Balcom BJ, Carpenter TA, Hall LD. (1994) The gelation of sodium alginate with calcium ions studied by magnetic resonance imaging (MRI). Carbohydr Res 257:117–126

    Article  CAS  Google Scholar 

  • Santos H, Fareleira P, LeGall J, Xavier AV. (1994) In vivo nuclear magnetic resonance in study of physiology of sulfate-reducing bacteria. Method Enzymol 243:543–558

    Article  CAS  Google Scholar 

  • Sijbesma WFH, Almeida JS, Reis MAM, Santos H (1996) Uncoupling effect of nitrite during denitrification by Pseudomonas fluorescens: an in vivo 31P-NMR study. Biotechnol Bioeng 52:176–182

    Article  PubMed  CAS  Google Scholar 

  • Steginsky CA, Beale JM, Floss HG, Mayer RM. (1992) Structural determination of alginic acid and the effects of calcium binding as determined by high-field n.m.r. Carbohydr Res 225:11–26

    Article  PubMed  CAS  Google Scholar 

  • Taipa MA, Cabral JMS, Santos H (1993) Comparison of glucose fermentation by suspended and gel-entrapped yeast cells: an in vivo nuclear magnetic resonance study. Biotechnol Bioeng 41:647–653

    Article  PubMed  CAS  Google Scholar 

  • Thelwall PE, Brindle KM. (1999) Analysis of CHO-K1 cell growth in a fixed bed bioreactor using magnetic resonance and imaging. Cytotechnology 31:121–132

    Article  Google Scholar 

  • Ugurbil K, Guernsey DL, Brown JR, Glynn P, Tobkes N, Edelman IS. (1981) 31P NMR studies of intact anchorage-dependant mouse embryo fibroblasts. Proc Natl Acad Sci USA 78:4843–4847

    Article  PubMed  CAS  Google Scholar 

  • Vogel HJ, Brodelius P (1984) An in vivo 31P-NMR comparison of freely suspended and immobilized Catharanthus roseus plant cells. J Biotechnol 1:159–170

    Article  CAS  Google Scholar 

  • Vogel HJ, Brodelius P, Lilja H, Lohmeier-Vogel EM. (1987) Nuclear magnetic resonance studies of immobilized cells. Method Enzymol 135:512–528

    Article  CAS  Google Scholar 

  • Watanabe T, Ohtsuka A, Murase N, Barth P, Gersonde K (1996) NMR studies on water and polymer diffusion in dextran gels. Influence of potassium ions on microstructure formation and gelation mechanism. Magnet Reson Med 35:697–705

    Article  CAS  Google Scholar 

  • Yao S, Costello M, Fane AG, Pope JM. (1995) Non-invasive observation of flow profiles and polymerisation layers in hollow fibre membrane filtration modules using NMR micro-imaging. J Membrane Sci 99:207–216

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barbotin, JN., Portais, JC., Alves, P.M., Santos, H. (2001). NMR and Immobilized Cells. In: Wijffels, R.H. (eds) Immobilized Cells. Springer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56891-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56891-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67070-4

  • Online ISBN: 978-3-642-56891-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics